Electric Mars: A large trans‐terminator electric potential drop on closed magnetic field lines above Utopia Planitia

2017 ◽  
Vol 122 (2) ◽  
pp. 2260-2271 ◽  
Author(s):  
Glyn Collinson ◽  
David Mitchell ◽  
Shaosui Xu ◽  
Alex Glocer ◽  
Joseph Grebowsky ◽  
...  
Author(s):  
Baptiste Trotabas ◽  
Renaud Gueroult

Abstract The benefits of thermionic emission from negatively biased electrodes for perpendicular electric field control in a magnetized plasma are examined through its combined effects on the sheath and on the plasma potential variation along magnetic field lines. By increasing the radial current flowing through the plasma thermionic emission is confirmed to improve control over the plasma potential at the sheath edge compared to the case of a cold electrode. Conversely, thermionic emission is shown to be responsible for an increase of the plasma potential drop along magnetic field lines in the quasi-neutral plasma. These results suggest that there exists a trade-off between electric field longitudinal uniformity and amplitude when using negatively biased emissive electrodes to control the perpendicular electric field in a magnetized plasma.


2008 ◽  
Vol 5 (4) ◽  
pp. 612-618
Author(s):  
Baghdad Science Journal

The huge magnetic fields of neutron star cause the nuclei of the stellar surface to form a tightly bound condensed layer. In this research some characteristics of polar gap and magnetosphere enclosed the star according to Sturrock Model were illustrated, positrons move out along the open field lines, and electrons flow to the stellar surface as in the related to Sturrock model. The magnetic field within polar gap areas, which is defined by the Irvin Radius (RL) decreases due to the expansion of the polar, resulting from the physical motion of the accreted material. The values of height gap at different distances from the star were estimated. The obtained results improve the most energetic positrons those with E? Emax radiate away their energy in a distances re = 104m above the polar gap while less energetic positrons produced at much greater distances re =108m. The potential drop across the polar gap is obtained using a well defined adopted formula, it is found that the potential drop across the polar gap grows like (h2), when h « rp


2007 ◽  
Vol 25 (4) ◽  
pp. 953-969 ◽  
Author(s):  
A. Teste ◽  
D. Fontaine ◽  
J.-A. Sauvaud ◽  
R. Maggiolo ◽  
P. Canu ◽  
...  

Abstract. Above the polar cap, at about 5–9 Earth radii (RE) altitude, the PEACE experiment onboard CLUSTER detected, for the first time, electron beams outflowing from the ionosphere with large and variable energy fluxes, well collimated along the magnetic field lines. All these events occurred during periods of northward or weak interplanetary magnetic field (IMF). These outflowing beams were generally detected below 100 eV and typically between 40 and 70 eV, just above the photoelectron level. Their energy gain can be explained by the presence of a field-aligned potential drop below the spacecraft, as in the auroral zone. The careful analysis of the beams distribution function indicates that they were not only accelerated but also heated. The parallel heating is estimated to about 2 to 20 eV and it globally tends to increase with the acceleration energy. Moreover, WHISPER observed broadband electrostatic emissions around a few kHz correlated with the outflowing electron beams, which suggests beam-plasma interactions capable of triggering plasma instabilities. In presence of simultaneous very weak ion fluxes, the outflowing electron beams are the main carriers of downward field-aligned currents estimated to about 10 nA/m2. These electron beams are actually not isolated but surrounded by wider structures of ion outflows. All along its polar cap crossings, Cluster observed successive electron and ion outflows. This implies that the polar ionosphere represents a significant source of cold plasma for the magnetosphere during northward or weak IMF conditions. The successive ion and electron outflows finally result in a filamented current system of opposite polarities which connects the polar ionosphere to distant regions of the magnetosphere.


2000 ◽  
Vol 12 (2) ◽  
pp. 145-153 ◽  
Author(s):  
R. Tabet ◽  
H. Imrane ◽  
D. Saifaoui ◽  
A. Dezairi ◽  
F. Miskane

1990 ◽  
Vol 44 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Hiromitsu Hamabata

Exact wave solutions of the nonlinear jnagnetohydrodynamic equations for a highly conducting incompressible fluid are obtained for the cases where the physical quantities are independent of one Cartesian co-ordina.te and for where they vary three-dimensionally but both the streamlines and magnetic field lines lie in parallel planes. It is shown that there is a class of exact wave solutions with large amplitude propagating in a straight but non-uniform magnetic field with constant or non-uniform velocity.


2021 ◽  
Vol 87 (2) ◽  
Author(s):  
Todd Elder ◽  
Allen H. Boozer

The prominence of nulls in reconnection theory is due to the expected singular current density and the indeterminacy of field lines at a magnetic null. Electron inertia changes the implications of both features. Magnetic field lines are distinguishable only when their distance of closest approach exceeds a distance $\varDelta _d$ . Electron inertia ensures $\varDelta _d\gtrsim c/\omega _{pe}$ . The lines that lie within a magnetic flux tube of radius $\varDelta _d$ at the place where the field strength $B$ is strongest are fundamentally indistinguishable. If the tube, somewhere along its length, encloses a point where $B=0$ vanishes, then distinguishable lines come no closer to the null than $\approx (a^2c/\omega _{pe})^{1/3}$ , where $a$ is a characteristic spatial scale of the magnetic field. The behaviour of the magnetic field lines in the presence of nulls is studied for a dipole embedded in a spatially constant magnetic field. In addition to the implications of distinguishability, a constraint on the current density at a null is obtained, and the time required for thin current sheets to arise is derived.


1971 ◽  
Vol 43 ◽  
pp. 329-339 ◽  
Author(s):  
Dale Vrabec

Zeeman spectroheliograms of photospheric magnetic fields (longitudinal component) in the CaI 6102.7 Å line are being obtained with the new 61-cm vacuum solar telescope and spectroheliograph, using the Leighton technique. The structure of the magnetic field network appears identical to the bright photospheric network visible in the cores of many Fraunhofer lines and in CN spectroheliograms, with the exception that polarities are distinguished. This supports the evolving concept that solar magnetic fields outside of sunspots exist in small concentrations of essentially vertically oriented field, roughly clumped to form a network imbedded in the otherwise field-free photosphere. A timelapse spectroheliogram movie sequence spanning 6 hr revealed changes in the magnetic fields, including a systematic outward streaming of small magnetic knots of both polarities within annular areas surrounding several sunspots. The photospheric magnetic fields and a series of filtergrams taken at various wavelengths in the Hα profile starting in the far wing are intercompared in an effort to demonstrate that the dark strands of arch filament systems (AFS) and fibrils map magnetic field lines in the chromosphere. An example of an active region in which the magnetic fields assume a distinct spiral structure is presented.


2021 ◽  
Vol 502 (1) ◽  
pp. 1263-1278
Author(s):  
Richard Kooij ◽  
Asger Grønnow ◽  
Filippo Fraternali

ABSTRACT The large temperature difference between cold gas clouds around galaxies and the hot haloes that they are moving through suggests that thermal conduction could play an important role in the circumgalactic medium. However, thermal conduction in the presence of a magnetic field is highly anisotropic, being strongly suppressed in the direction perpendicular to the magnetic field lines. This is commonly modelled by using a simple prescription that assumes that thermal conduction is isotropic at a certain efficiency f < 1, but its precise value is largely unconstrained. We investigate the efficiency of thermal conduction by comparing the evolution of 3D hydrodynamical (HD) simulations of cold clouds moving through a hot medium, using artificially suppressed isotropic thermal conduction (with f), against 3D magnetohydrodynamical (MHD) simulations with (true) anisotropic thermal conduction. Our main diagnostic is the time evolution of the amount of cold gas in conditions representative of the lower (close to the disc) circumgalactic medium of a Milky-Way-like galaxy. We find that in almost every HD and MHD run, the amount of cold gas increases with time, indicating that hot gas condensation is an important phenomenon that can contribute to gas accretion on to galaxies. For the most realistic orientations of the magnetic field with respect to the cloud motion we find that f is in the range 0.03–0.15. Thermal conduction is thus always highly suppressed, but its effect on the cloud evolution is generally not negligible.


Sign in / Sign up

Export Citation Format

Share Document