scholarly journals Multidecadal variability and climate shift in the North Atlantic Ocean

2017 ◽  
Vol 44 (10) ◽  
pp. 4985-4993 ◽  
Author(s):  
Dan Seidov ◽  
Alexey Mishonov ◽  
James Reagan ◽  
Rost Parsons
2005 ◽  
Vol 18 (21) ◽  
pp. 4562-4581 ◽  
Author(s):  
I. V. Polyakov ◽  
U. S. Bhatt ◽  
H. L. Simmons ◽  
D. Walsh ◽  
J. E. Walsh ◽  
...  

Abstract Substantial changes occurred in the North Atlantic during the twentieth century. Here the authors demonstrate, through the analysis of a vast collection of observational data, that multidecadal fluctuations on time scales of 50–80 yr are prevalent in the upper 3000 m of the North Atlantic Ocean. Spatially averaged temperature and salinity from the 0–300- and 1000–3000-m layers vary in opposition: prolonged periods of cooling and freshening (warming and salinification) in one layer are generally associated with opposite tendencies in the other layer, consistent with the notion of thermohaline overturning circulation. In the 1990s, widespread cooling and freshening was a dominant feature in the 1000–3000-m layer, whereas warming and salinification generally dominated in the upper 300 m, except for the subpolar North Atlantic where complex exchanges with the Arctic Ocean occur. The single-signed basin-scale pattern of multidecadal variability is evident from decadal 1000–3000-m temperature and salinity fields, whereas upper-ocean temperature and salinity distributions have a more complicated spatial pattern. Results suggest a general warming trend of 0.012° ± 0.009°C decade−1 in the upper-3000-m North Atlantic over the last 55 yr of the twentieth century, although during this time there are periods in which short-term trends are strongly amplified by multidecadal variability. Since warming (cooling) is generally associated with salinification (freshening) for these large-scale fluctuations, qualitatively tracking the mean temperature–salinity relationship, vertical displacement of isotherms appears to play an important role in this warming and in other observed fluctuations. Finally, since the North Atlantic Ocean plays a crucial role in establishing and regulating global thermohaline circulation, the multidecadal fluctuations of the heat and freshwater balance discussed here should be considered when assessing long-term climate change and variability, both in the North Atlantic and at global scales.


2018 ◽  
Vol 612 ◽  
pp. 1141-1148 ◽  
Author(s):  
Min Zhang ◽  
Yuanling Zhang ◽  
Qi Shu ◽  
Chang Zhao ◽  
Gang Wang ◽  
...  

2021 ◽  
Vol 56 (7-8) ◽  
pp. 2027-2056
Author(s):  
Sandra M. Plecha ◽  
Pedro M. M. Soares ◽  
Susana M. Silva-Fernandes ◽  
William Cabos

Eos ◽  
1986 ◽  
Vol 67 (44) ◽  
pp. 835 ◽  
Author(s):  
W. E. Esaias ◽  
G. C. Feldman ◽  
C. R. McClain ◽  
J. A. Elrod

2014 ◽  
Vol 31 (6) ◽  
pp. 1434-1445 ◽  
Author(s):  
Federico Ienna ◽  
Young-Heon Jo ◽  
Xiao-Hai Yan

Abstract Subsurface coherent vortices in the North Atlantic, whose saline water originates from the Mediterranean Sea and which are known as Mediterranean eddies (meddies), have been of particular interest to physical oceanographers since their discovery, especially for their salt and heat transport properties into the North Atlantic Ocean. Many studies in the past have been successful in observing and studying the typical properties of meddies by probing them with in situ techniques. The use of remote sensing techniques would offer a much cheaper and easier alternative for studying these phenomena, but only a few past studies have been able to study meddies by remote sensing, and a reliable method for observing them remotely remains elusive. This research presents a new way of locating and tracking meddies in the North Atlantic Ocean using satellite altimeter data. The method presented in this research makes use of ensemble empirical mode decomposition (EEMD) as a means to isolate the surface expressions of meddies on the ocean surface and separates them from any other surface constituents, allowing robust meddies to be consistently tracked by satellite. One such meddy is successfully tracked over a 6-month time period (2 November 2005 to 17 May 2006). Results of the satellite tracking method are verified using expendable bathythermographs (XBT).


2015 ◽  
Vol 137 ◽  
pp. 261-283 ◽  
Author(s):  
Benjamin S. Twining ◽  
Sara Rauschenberg ◽  
Peter L. Morton ◽  
Stefan Vogt

Sign in / Sign up

Export Citation Format

Share Document