scholarly journals First Na lidar measurements of turbulence heat flux, thermal diffusivity, and energy dissipation rate in the mesopause region

2017 ◽  
Vol 44 (11) ◽  
pp. 5782-5790 ◽  
Author(s):  
Yafang Guo ◽  
Alan Z. Liu ◽  
Chester S. Gardner
2014 ◽  
Vol 747 ◽  
pp. 73-102 ◽  
Author(s):  
Matthias Kaczorowski ◽  
Kai-Leong Chong ◽  
Ke-Qing Xia

AbstractGeometrical confinement of turbulent Rayleigh–Bénard convection (RBC) in Cartesian geometries is found to reduce the local Bolgiano length scale in the centre of the cell $L_{B,centre}$ and can therefore be used to study cascade processes in the bulk of RBC. The dependence of $L_{B,centre}$ versus $\varGamma $ suggests a cut-off to the local $L_B$, which depends on the Prandtl number $Pr$ and is of the order of the cell’s smallest dimension. It is also observed that geometrical confinement changes the topology of the flow, causing the turbulent kinetic energy dissipation rate and the temperature variance dissipation rate (averaged over the centre of the cell and normalized by their respective global averages) to exhibit a maximum at a certain $\varGamma $, which roughly coincides with the aspect ratio at which the viscous and thermal boundary layers of the two opposite lateral walls merge. As a result the mean heat flux through the core region also exhibits a maximum. Unlike in the cubic case, we find that geometrical confinement of the flow results in a local balance of the heat flux and the turbulent kinetic energy dissipation rate for $Pr= 4.38$ for all values of the Rayleigh number $Ra$ (up to $10^{10}$), while no balance is observed for $Pr= 0.7$. The need for very high bulk resolution to accurately resolve the gradients of the flow field at high $Ra$ is shown by analysing the second-order structure functions of the vertical velocity and temperature in the bulk of RBC. Under-resolution of the temperature field yields a large error in the dissipative range scaling, which is believed to be an effect of intermittently penetrating thermal plumes. The resolution contrast resulting from the requirement to resolve the thermal plumes and the homogeneous and isotropic background turbulence scales as $\delta _T / \langle \eta _k \rangle _{centre} \sim Ra^{0.1}$ and should therefore be taken into account when tackling very high $Ra$. In the case studied here, under-resolution can have a significant effect on the local heat flux through the centre of the cell.


1994 ◽  
Vol 5 (4) ◽  
pp. 537-557 ◽  
Author(s):  
M. Bertsch ◽  
R. Dal Passo ◽  
R. Kersner

We study the semi-empirical b—ε model which describes the time evolution of turbulent spots in the case of equal diffusivity of the turbulent energy density b and the energy dissipation rate ε. We prove that the system of two partial differential equations possesses a solution, and that after some time this solution exhibits self-similar behaviour, provided that the system has self-similar solutions. The existence of such self-similar solutions depends upon the value of a parameter of the model.


Sign in / Sign up

Export Citation Format

Share Document