Influence of Western Tibetan Plateau Summer Snow Cover on East Asian Summer Rainfall

2018 ◽  
Vol 123 (5) ◽  
pp. 2371-2386 ◽  
Author(s):  
Zhibiao Wang ◽  
Renguang Wu ◽  
Shangfeng Chen ◽  
Gang Huang ◽  
Ge Liu ◽  
...  
2021 ◽  
Vol 9 ◽  
Author(s):  
Zhibiao Wang ◽  
Renguang Wu ◽  
Zhang Chen ◽  
Lihua Zhu ◽  
Kai Yang ◽  
...  

In recent years, some studies emphasized the influence of western Tibetan Plateau summer snow on the East Asian summer precipitation. With the temperature rise in the past decades, the snow cover over the western Tibetan Plateau in summer has significantly decreased. This raises the question whether the impact of the Tibetan Plateau snow has changed. The present study identifies a prominent change in the influence of the western Tibetan Plateau snow cover on the East Asian summer precipitation. Before the early 2000’s, positive precipitation anomalies extend from the southeastern Tibetan Plateau through the Yangtze River to Japan and Korea and negative anomalies cover southeast China corresponding to more Tibetan Plateau snow cover. After the early 2000’s, with the reduction of snow cover variability, below-normal and above-normal summer precipitation occurs over northern China-Mongolia and northeast Asia, respectively, corresponding to more Tibetan Plateau snow cover. The change in the influence of the Tibetan Plateau snow on the East Asian summer precipitation is associated with an obvious change in the atmospheric circulation anomaly pattern. Before the early 2000’s, the wind anomalies display a south-north contrast pattern with anomalous convergence along the Yangtze River. After the early 2000’s, an anomalous cyclone occupies Northeast China with anomalous southerlies and northerlies over northeast Asia and northern China, respectively. The Tibetan Plateau snow cover variation after the early 2000’s is associated with the northeast Indian summer precipitation. The model experiments confirm that the weakened influence of summer western Tibetan Plateau snow cover on the East Asian atmospheric circulation and precipitation with the reduced snow cover anomalies.


2015 ◽  
Vol 47 (1-2) ◽  
pp. 555-565 ◽  
Author(s):  
Chao He ◽  
Bo Wu ◽  
Chunhui Li ◽  
Ailan Lin ◽  
Dejun Gu ◽  
...  

2016 ◽  
Vol 29 (23) ◽  
pp. 8495-8514 ◽  
Author(s):  
Zhixiang Xiao ◽  
Anmin Duan

Abstract The relationship between Tibetan Plateau (TP) snow cover and the East Asian summer monsoon (EASM) has long been discussed, but the underlying mechanism remains controversial. In this paper, the snow–albedo and snow–hydrology feedbacks over the TP are investigated based on multiple sources of snow data for the period 1979–2011. The results indicate that winter snow cover plays an important role in cooling local air temperature through the snow–albedo effect; the TP surface net solar radiation in years with above-normal snow cover is approximately 18 W m−2 less than that in below-normal snow cover years. However, data analysis demonstrates that persistent effects of winter snow cover are limited to the period from winter to spring over most parts of the central and eastern TP. Therefore, the preceding snow cover over the central and eastern TP exerts little influence over either the in situ summer atmospheric heat source or the EASM, because of its limited persistence. In contrast, the effects of winter or spring snow cover anomalies over the western TP and the Himalayas can last until summer, and these anomalies further influence the EASM by modulating moisture transport to eastern China and favoring eastward-propagating synoptic disturbances that are generated over the TP. Generally, above-normal snow cover over the western TP and the Himalayas facilitates abundant summer precipitation between the Yangtze and Yellow River basins, which is confirmed by results from a regional Weather Research and Forecasting model simulation.


Sign in / Sign up

Export Citation Format

Share Document