scholarly journals Global Sensitivity of Simulated Water Balance Indicators Under Future Climate Change in the Colorado Basin

2018 ◽  
Vol 54 (1) ◽  
pp. 132-149 ◽  
Author(s):  
Katrina E. Bennett ◽  
Jorge R. Urrego Blanco ◽  
Alexandra Jonko ◽  
Theodore J. Bohn ◽  
Adam L. Atchley ◽  
...  
2013 ◽  
Vol 726-731 ◽  
pp. 3249-3255
Author(s):  
Emmanuel Kwame Appiah-Adjei ◽  
Long Cang Shu ◽  
Kwaku Amaning Adjei ◽  
Cheng Peng Lu

In order to ensure availability of water throughout the year in the Tailan River basin of northwestern China, an underground reservoir has been constructed in the basin to augment the groundwater resource and efficiently utilize it. This study investigates the potential impact of future climate change on the reservoir by assessing its influence on sustainability of recharge sources to the reservoir. The methods employed involved using a combined Statistical Downscaling Model (SDSM) and Long Ashton Research Station Weather Generator (LARS-WG) to downscale the climate variations of the basin from a global climate model and applying them through a simple soil water balance to quantify their impact on recharge to the reservoir. The results predict the current mean monthly temperature of the basin to increase by 2.01°C and 2.84°C for the future periods 2040-2069 and 2070-2099, respectively, while the precipitations are to decrease by 25% and 36% over the same periods. Consequently, the water balance analyses project the recharge to the reservoir to decrease by 37% and 49% for the periods 2040-2069 and 2070-2099, respectively. Thus the study provides useful information for sustainable management of the reservoir against potential future climate changes.


2011 ◽  
Vol 7 (1) ◽  
pp. 61-70 ◽  
Author(s):  
M. Prasch ◽  
T. Marke ◽  
U. Strasser ◽  
W. Mauser

Abstract. Future climate change will affect the water availability in large areas. In order to derive appropriate adaptation strategies the impact on the water balance has to be determined on a regional scale in a high spatial and temporal resolution. Within the framework of the BRAHMATWINN project the model system DANUBIA, developed within the project GLOWA Danube (GLOWA Danube, 2010; Mauser and Ludwig, 2002), was applied to calculate the water balance components under past and future climate conditions in the large-scale mountain watersheds of the Upper Danube and the Upper Brahmaputra. To use CLM model output data as meteorological drivers DANUBIA is coupled with the scaling tool SCALMET (Marke, 2008). For the determination of the impact of glacier melt water on the water balance the model SURGES (Weber et al., 2008; Prasch, 2010) is integrated into DANUBIA. In this paper we introduce the hydrological model DANUBIA with the tools SCALMET and SURGES. By means of the distributed hydrological time series for the past from 1971 to 2000 the model performance is presented. In order to determine the impact of climate change on the water balance in both catchments, time series from 2011 to 2080 according to the IPCC SRES emission scenarios A2, A1B, B2 and Commitment are analysed. Together with the socioeconomic outcomes (see Chapter 4) the DANUBIA model results provide the basis for the derivation of Integrated Water Resources Management Strategies to adapt to climate change impacts (see Chapter 9 and 10).


Author(s):  
S. P. Aggarwal ◽  
P. K. Thakur ◽  
V. Garg ◽  
B. R. Nikam ◽  
A. Chouksey ◽  
...  

The water resources status and availability of any river basin is of primary importance for overall and sustainable development of any river basin. This study has been done in Beas river basin which is located in North Western Himalaya for assessing the status of water resources in present and future climate change scenarios. In this study hydrological modelling approach has been used for quantifying the water balance components of Beas river basin upto Pandoh. The variable infiltration capacity (VIC) model has been used in energy balance mode for Beas river basin at 1km grid scale. The VIC model has been run with snow elevation zones files to simulate the snow module of VIC. The model was run with National Centre for Environmental Prediction (NCEP) forcing data (Tmax, Tmin, Rainfall and wind speed at 0.5degree resolution) from 1 Jan. 1999 to 31 Dec 2006 for calibration purpose. The additional component of glacier melt was added into overall river runoff using semi-empirical approach utilizing air temperature and glacier type and extent data. The ground water component is computed from overall recharge of ground water by water balance approach. The overall water balance approach is validated with river discharge data provided by Bhakra Beas Management Board (BBMB) from 1994-2014. VIC routing module was used to assess pixel wise flow availability at daily, monthly and annual time scales. The mean monthly flow at Pandoh during study period varied from 19 - 1581 m<sup>3</sup>/s from VIC and 50 to 1556 m<sup>3</sup>/sec from observation data, with minimum water flow occurring in month of January and maximum flow in month of August with annual R<sup>2</sup> of 0.68. The future climate change data is taken from CORDEX database. The climate model of NOAA-GFDL-ESM2M for IPCC RCP scenario 4.5 and 8.5 were used for South Asia at 0.44 deg. grid from year 2006 to 2100. The climate forcing data for VIC model was prepared using daily maximum and minimum near surface air temperature, daily precipitation and daily surface wind speed. The GFDL model also gives validation phase scenarios from 2006 to 2015, which are used to test the overall model performance with current data. The current assessment made by hydrological water balance based approach has given reasonable good results in Beas river basin. The main limitation of this study is lack of full representation of glacier melt flow using fully energy balance model. This component will be addressed in coming time and it will be integrated with tradition hydrological and snowmelt runoff models. The other limitation of current study is dependence on NCEP or other reanalysis of climate forcing data for hydrological modelling, this leads to mismatch between actual and simulated water balance components. This problem can be addressed if more ground based and fine resolution grid based hydro meteorological data are used as input forcing data for hydrological modelling.


2006 ◽  
Vol 106 (3) ◽  
pp. 323-334 ◽  
Author(s):  
Michael B. Jones ◽  
Alison Donnelly ◽  
Fabrizio Albanito

2002 ◽  
Vol 19 ◽  
pp. 179-192 ◽  
Author(s):  
M Lal ◽  
H Harasawa ◽  
K Takahashi

Author(s):  
Sylvia Edgerton ◽  
Michael MacCracken ◽  
Meng-Dawn Cheng ◽  
Edwin Corporan ◽  
Matthew DeWitt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document