Hybrid energy storage sizing based on discrete Fourier transform and particle swarm optimization for microgrid applications

Author(s):  
Salman Hajiaghasi ◽  
Mohammad Milad Hosseini Ahmadi ◽  
Pedram Goleij ◽  
Ahmad Salemnia ◽  
Mohsen Hamzeh
Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1795
Author(s):  
Manuel Cedillo-Hernandez ◽  
Antonio Cedillo-Hernandez ◽  
Francisco J. Garcia-Ugalde

Robust digital image watermarking is an information security technique that has been widely used to solve several issues related mainly with copyright protection as well as ownership authentication. In general terms, robust watermarking conceals a small signal called a “watermark” in a host image in a form imperceptible to human vision. The efficiency of conventional robust watermarking based on frequency domain depend directly on the results of performance in terms of robustness and imperceptibility. According to the application scenario and the image dataset, it is common practice to adjust the key parameters used by robust watermarking methods in an experimental form; however, this manual adjustment may involve exhaustive tasks and at the same time be a drawback in practical scenarios. In recent years, several optimization techniques have been adopted by robust watermarking to allowing adjusting in an automatic form its key operation parameters, improving thus its performance. In this context, this paper proposes an improved robust watermarking algorithm in discrete Fourier transform via spread spectrum, optimizing the key operation parameters, particularly the amounts of bands and coefficients of frequency as well as the watermark strength factor using particle swarm optimization in conjunction with visual information fidelity and bit correct rate criteria. Experimental results obtained in this research show improved robustness against common signal processing and geometric distortions, preserving a high visual quality in color images. Performance comparison with conventional discrete Fourier transform proposal is provided, as well as with the current state-of-the-art of particle swarm optimization applied to image watermarking.


Author(s):  
János Ferencz ◽  
András Kelemen

Abstract The paper presents the energy loss minimization of a hybrid energy storage system used in an electric vehicle, composed by a battery and a supercapacitor. The optimization is carried out by searching the optimal power sharing between the energy storage devices. The power sharing factor is defined as a discrete time variable, with constant values during each subdivision of the driving cycle. The elements of the optimal solution vector are the power sharing factors and the time instants that define the subdivisions. The particle swarm optimization algorithms have been validated using the Rastrigin test function, and three versions of the boundary behaviour have been compared in case of the constrained optimization. The algorithms have been tested for the energy loss minimization in case of a simple driving cycle, and their performance has been assessed by statistical analysis for different swarm sizes.


Author(s):  
Jijun Liu ◽  
Yuxin Bai ◽  
Yingfeng He

This work aims at solving complex problems of the optimal scheduling model of active distribution network, teaching strategies are proposed to improve the global search ability of particle swarm optimization. Moreover, based on the improved Euclidean distance cyclic crowding sorting strategy, the convergence ability of Li Zhiquan algorithm is improved. With the cost and voltage indexes of the energy storage system of the distribution network as the goal, different optimized configuration schemes are constructed, and the improved HTL-MOPSO algorithm is adopted to find the solution. The results show that compared with the traditional TV-MOPSO algorithm, the proposed algorithm has better convergence performance and optimization ability, and has a lower economic cost. In short, the algorithm proposed can provide a basis for improving the optimization of active distribution network scheduling strategies.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 642 ◽  
Author(s):  
Tiezhou Wu ◽  
Xiao Shi ◽  
Li Liao ◽  
Chuanjian Zhou ◽  
Hang Zhou ◽  
...  

In view of optimizing the configuration of each unit’s capacity for energy storage in the microgrid system, in order to ensure that the planned energy storage capacity can meet the reasonable operation of the microgrid’s control strategy, the power fluctuations during the grid-connected operation of the microgrid are considered in the planning and The economic benefit of hybrid energy storage is quantified. A multi-objective function aiming at minimizing the power fluctuation on the DC bus in the microgrid and optimizing the capacity ratio of each energy storage system in the hybrid energy storage system (HESS) is established. The improved particle swarm algorithm (PSO) is used to solve the objective function, and the solution is applied to the microgrid experimental platform. By comparing the power fluctuations of the battery and the supercapacitor in the HESS, the power distribution is directly reflected. Comparing with the traditional mixed energy storage control strategy, it shows that the optimized hybrid energy storage control strategy can save 4.3% of the cost compared with the traditional hybrid energy storage control strategy, and the performance of the power fluctuation of the renewable energy is also improved. It proves that the proposed capacity configuration of the HESS has certain theoretical significance and practical application value.


Sign in / Sign up

Export Citation Format

Share Document