Xenopus Embryo: Mesoderm Induction

Author(s):  
Leslie Dale ◽  
Fiona C Wardle
Development ◽  
2000 ◽  
Vol 127 (7) ◽  
pp. 1455-1465 ◽  
Author(s):  
R. Vignali ◽  
L. Poggi ◽  
F. Madeddu ◽  
G. Barsacchi

XHNF1(β) is a homeobox-containing gene initially expressed at the blastula stage in the vegetal part of the Xenopus embryo. We investigated its early role by functional ablation, through mRNA injection of an XHNF1(beta)/engrailed repressor fusion construct (XHNF1(beta)/EngR). Dorsal injections of XHNF1(beta)/EngR mRNA abolish dorsal mesoderm formation, leading to axial deficiencies; ventral injections disrupt ventral mesoderm formation without affecting axial development. XHNF1(beta)/EngR phenotypic effects specifically depend on the DNA-binding activity of its homeodomain and are fully rescued by coinjection of XHNF1(beta) mRNA. Vegetal injection of XHNF1(beta)/EngR mRNA blocks the mesoderm-inducing ability of vegetal explants. Both B-Vg1 and VegT maternal determinants trigger XHNF1(beta) expression in animal caps. XHNF1(beta)/EngR mRNA blocks B-Vg1-mediated, but not by eFGF-mediated, mesoderm induction in animals caps. However, wild-type XHNF1(beta) mRNA does not trigger Xbra expression in animal caps. We conclude that XHNF1(beta) function is essential, though not sufficient, for mesoderm induction in the Xenopus embryo.


ChemMedChem ◽  
2021 ◽  
Author(s):  
Farah Raad ◽  
Taukeer A Khan ◽  
Tilman U. Esser ◽  
James E. Hudson ◽  
Bhakti Irene Seth ◽  
...  

1997 ◽  
Vol 136 (2) ◽  
pp. 411-420 ◽  
Author(s):  
Kris Vleminckx ◽  
Ellen Wong ◽  
Kathy Guger ◽  
Bonnee Rubinfeld ◽  
Paul Polakis ◽  
...  

Mutations in the adenomatous polyposis coli (APC) tumor suppressor gene are linked to both familial and sporadic human colon cancer. So far, a clear biological function for the APC gene product has not been determined. We assayed the activity of APC in the early Xenopus embryo, which has been established as a good model for the analysis of the signaling activity of the APC-associated protein β-catenin. When expressed in the future ventral side of a four-cell embryo, full-length APC induced a secondary dorsoanterior axis and the induction of the homeobox gene Siamois. This is similar to the phenotype previously observed for ectopic β-catenin expression. In fact, axis induction by APC required the availability of cytosolic β-catenin. These results indicate that APC has signaling activity in the early Xenopus embryo. Signaling activity resides in the central domain of the protein, a part of the molecule that is missing in most of the truncating APC mutations in colon cancer. Signaling by APC in Xenopus embryos is not accompanied by detectable changes in expression levels of β-catenin, indicating that it has direct positive signaling activity in addition to its role in β-catenin turnover. From these results we propose a model in which APC acts as part of the Wnt/β-catenin signaling pathway, either upstream of, or in conjunction with, β-catenin.


Sign in / Sign up

Export Citation Format

Share Document