By Reaction with a Transition- or Inner Transition-Metal-Metal Alkyl or Hydride Complex

2007 ◽  
pp. 293-293
Author(s):  
M. J. Newlands
2014 ◽  
Vol 924 ◽  
pp. 233-252 ◽  
Author(s):  
Li Hong Tang ◽  
Hui Bin Guo ◽  
Qian Shu Li ◽  
Jin Hui Peng ◽  
Jun Jie Gu ◽  
...  

Theoretical studies on a series of binuclear transition metal pentazolides M2(N5)4(M=Co, Rh and Ir) predict Paddlewheel-type structures with very short metal-metal distances suggesting high-order metal-metal multiple bonds. Natural Bonding Orbital (NBO) analysis have indicated that the bonding between the metal atom and the five-membered ring is predominantly ionic for each M2(N5)4species, and a high-order metal-metal multiple bonding exists between the two metal atoms, in addition, the presence of the delocalized π orbital plays an important role in the stabilization of this metal-polynitrogen species. Nucleus independent chemical shift (NICS) values confirm that the planar N5exhibits aromaticity in these M2(N5)4species. The values of NICS(0.0), NICS(0.5) and NICS(1.0) for Co2(N5)4are larger than those of the other two M2(N5)4species (M=Rh and Ir), with the order of Co2(N5)4>Rh2(N5)4>Ir2(N5)4. The dissociation energies into Mononuclear Fragments for M2(N5)4(M=Co, Rh and Ir) are predicted to be 82.9 (85.7), 139.9 (113.2), and 155.1 (149.7) kcal/mol, respectively. However, the dissociation energies for the loss of one pentazolato group from the M2(N5)4analysis have indicated that the Co2(N5)4is relatively higher at ~40 kcal/mol. Thermochemistry suggests Co2(N5)4to be a viable species.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Jinbo Pan ◽  
Yan-Fang Zhang ◽  
Jingda Zhang ◽  
Huta Banjade ◽  
Jie Yu ◽  
...  

Abstract Auxetic two-dimensional (2D) materials provide a promising platform for biomedicine, sensors, and many other applications at the nanoscale. In this work, utilizing a hypothesis-based data-driven approache, we identify multiple materials with remarkable in-plane auxetic behavior in a family of buckled monolayer 2D materials. These materials are transition metal selenides and transition metal halides with the stoichiometry MX (M = V, Cr, Mn, Fe, Co, Cu, Zn, Ag, and X = Se, Cl, Br, I). First-principles calculations reveal that the desirable auxetic behavior of these 2D compounds originates from the interplay between the buckled 2D structure and the weak metal–metal interaction determined by their electronic structures. We observe that the Poisson’s ratio is sensitive to magnetic order and the amount of uniaxial stress applied. A transition from positive Poisson’s ratio (PPR) to negative Poisson’s ratio (NPR) for a subgroup of MX compounds under large uniaxial stress is predicted. The work provides a guideline for the future design of 2D auxetic materials at the nanoscale.


1983 ◽  
Vol 38 (11) ◽  
pp. 1392-1398 ◽  
Author(s):  
Wolfgang A. Herrmann ◽  
Johann Plank ◽  
John L. Hubbard ◽  
Gangolf W. Kriechbaum ◽  
Willibald Kalcher ◽  
...  

Abstract Carbene transfer from aliphatic diazoalkanes upon coordinatively unsaturated metal centers is a general synthetic concept that provides straight-forward routes into organo-metallic hydrocarbon chemistry. A comparison focussing on several key reactions of general applicability demonstrates that mononuclear organometal substrates add carbenes that may act as bridging ligands (e.g., compound 6) if they arise from ω,ω'-bisdiazoalkanes. By way of contrast, metal-metal double bonds cleanly form dimetallacyclo-propane-type derivatives under very mild conditions (7-9). The broadest variety of structures is finally encountered with metal-metal triply bonded precursors such as the molybdenum compounds 3: here, the initial diazoalkane adducts are subject to further rearrangement processes commonly leading to metal-metal single bonds (11) or causing irreversible cleavage of the dinuclear metal systems (10).


1982 ◽  
Vol 13 (26) ◽  
Author(s):  
W. A. HERRMANN ◽  
J. M. HUGGINS ◽  
C. BAUER ◽  
M. SMISCHEK ◽  
H. PFISTERER ◽  
...  

1989 ◽  
Vol 156 ◽  
Author(s):  
Aaron Wold ◽  
Kirby Dwight

ABSTRACTThe structure-property relationships of several conducting transition metal oxides, as well as their preparative methods, are presented in this paper. The importance of preparing homogeneous phases with precisely known stoichiometry is emphasized. A comparison is also made of the various techniques used to prepare both polycrystalline and single crystal samples. For transition metal oxides, the metallic properties are discussed either in terms of metal-metal distances which are short enough to result in metallic behavior, or in terms of the formation of a П* conduction band resulting from covalent metal-oxygen interactions. Metallic behavior is observed when the conduction bands are populated with either electrons or holes. The concentration of these carriers can be affected by either cation or anion substitutions. The discussion in this presentation will be limited to the elements Re, Ti, V, Cr, Mo, and Cu.


Sign in / Sign up

Export Citation Format

Share Document