1987 ◽  
Vol 95 (1099) ◽  
pp. 309-315 ◽  
Author(s):  
Masahisa SOBUE ◽  
Junji SAKAI ◽  
Kousuke NAKAMURA

2007 ◽  
Vol 561-565 ◽  
pp. 1565-1568 ◽  
Author(s):  
Kazuhiko Iwai ◽  
Jun Akiyama ◽  
Shigeo Asai

A high magnetic field is a useful tool to control the crystal alignment of ceramic materials. In this study, a horizontal 10T static magnetic field was imposed on slurry containing hydroxyapatite (HAp) crystals under the horizontal mold rotation during slip casting process so as to introduce uni-axial alignment for some amount of crystals in the sample, and then it was sintered in atmosphere without the magnetic field. From X-ray diffraction, it has been found that the HAp crystals in the sample treated with the mold rotation under the magnetic field were aligned its c-axis to a particular direction.


2006 ◽  
Vol 309-311 ◽  
pp. 53-56 ◽  
Author(s):  
Jun Akiyama ◽  
Masami Hashimoto ◽  
Hiroaki Takadama ◽  
Fukue Nagata ◽  
Yoshiyuki Yokogawa ◽  
...  

A high magnetic field is a useful tool to control the crystal alignment of non-magnetic materials such as ceramics and polymers. In the case of Hydroxyapatite crystal, the a,b-axis is aligned parallel to the direction of an imposed magnetic field. This fact implies that the alignment of the c-axis is not controllable only using a high static magnetic field due to the freedom of the c-axis in a plane perpendicular to a magnetic field direction. In this study, a high static magnetic field and mold rotation was simultaneously so applied during a slip casting process as to align the c-axis of HAp poly crystals.


2014 ◽  
Vol 976 ◽  
pp. 70-74
Author(s):  
Iván L. Samperio-Gómez ◽  
Claudia A. Cortés-Escobedo ◽  
A.M. Bolarín-Miró ◽  
Félix Sánchez de Jesús

Several methods for processing tubular anodes for solid oxide fuel cells have been developed, but many of them are expensive and sophisticated, therefore, there is a great interest in researching the use of a simple process to produce them. In this paper, the results of using slip casting for processing minitubes of NiO-8YSZ with the dimensions of 100x5x1 mm are presented. This is a versatile method for obtaining complex geometries with a suitable surface finish and dimensional precision at low cost compared with ceramic processing which uses high energy consumption and/or has high startup costs. In order to carry out this study, an aqueous slurry of an oxide mixture of NiO-8YSZ with poly-etilenglycol as a dispersant agent was used. The modification of the ratio of water:ceramic powders, the composition NiO:x8YSZ (30, 50 and 70 in wt.) and the casting time (3 to 30 min) were also applied. The minitubes obtained were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and spectroscopy of dispersive energy (EDS). The results show that slip casting is an appropriate method to obtain NiO-8YSZ minitubes. Minitubes of varying composition (30, 50 and 70% in wt. of NiO) with dimensions of 100x5x1 mm were obtained showing an excellent porosity (higher than 96% in v/v) and a homogeneous distribution of NiO and 8YSZ particles. XRD analysis confirms the presence of starting oxides before and after the casting process.


Sign in / Sign up

Export Citation Format

Share Document