Large River Systems and Climate Change

Large Rivers ◽  
2008 ◽  
pp. 627-659 ◽  
Author(s):  
Michael D. Blum
2021 ◽  
Author(s):  
Katalin Demeter ◽  
Julia Derx ◽  
Jürgen Komma ◽  
Juraj Parajka ◽  
Jack Schijven ◽  
...  

<p><strong>Background</strong>: Rivers are important sources for drinking water supply, however, they are often impacted by wastewater discharges from wastewater treatment plants (WWTP) and combined sewer overflows (CSO). Reduction of the faecal pollution burden is possible through enhanced wastewater treatment or prevention of CSOs. Few methodological efforts have been made so far to investigate how these measures would affect the long-term treatment requirements for microbiologically safe drinking water supply under future changes.</p><p><strong>Objectives</strong>: This study aimed to apply a new integrative approach to decipher the interplay between the effects of future changes and wastewater management measures on the required treatment of river water to produce safe drinking water. We investigated scenarios of climate change and population growth, in combination with different wastewater management scenarios (i.e., no upgrades and upgrades at WWTPs, CSOs, and both). To the best of our knowledge, this is the first study to investigate this interplay. We focussed on the viral index pathogens norovirus and enterovirus and made a cross-comparison with a bacterial and a protozoan reference pathogen (Campylobacter and Cryptosporidium).</p><p><strong>Methods</strong>: We significantly extended QMRAcatch (v1.0 Python), a probabilistic-deterministic model that combines virus fate and transport modelling in the river with quantitative microbial risk assessment (QMRA). To investigate the impact of climatic changes, we used a conceptual semi-distributed hydrological model and regional climate model outputs to simulate river discharges for the period 2035 – 2049. We assumed that population growth leads to a corresponding increase in WWTP discharges. QMRAcatch was successfully calibrated and validated based on a four-year dataset of a human-associated genetic MST marker and enterovirus. The study site was the Danube in Vienna, Austria.</p><p><strong>Results</strong>: In the reference scenario, approx. 98% of the enterovirus and norovirus loads at the study site (median: 10<sup>10</sup> and 10<sup>13</sup> N/d) originated from WWTP effluent, while the remainder was via CSO events. The required log reduction value (LRV) to produce safe drinking water was 6.3 and 8.4 log<sub>10</sub> for enterovirus and norovirus. Future changes in population size, river flows and CSO events did not affect these treatment requirements, and neither did the prevention of CSOs. In contrast, in the scenario of enhanced wastewater treatment, which showed lower LRVs by 2.0 and 1.3 log<sub>10</sub>, climate-change-driven increases in CSO events had a considerable impact on the treatment requirements, as they affected the main pollution source. Preventing CSOs and installing enhanced treatment at the WWTPs together had the most significant positive effect with a reduction of LRVs by 3.9 and 3.8 log<sub>10</sub> compared to the reference scenario.</p><p><strong>Conclusions</strong>: The integrative modelling approach was successfully realised. The simultaneous consideration of source apportionment and concentrations of the reference pathogens were found crucial to understand the interplay among the effects of climate change, population growth and pollution control measures. The approach was demonstrated for a study site representing a large river impacted by WWTP and CSO discharges, but is applicable at other sites to support long term water safety planning.</p>


2020 ◽  
Vol 15 (9) ◽  
pp. 094012
Author(s):  
Yifan Cheng ◽  
Nathalie Voisin ◽  
John R Yearsley ◽  
Bart Nijssen

Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2392
Author(s):  
Nikolay Kasimov ◽  
Galina Shinkareva ◽  
Mikhail Lychagin ◽  
Sergey Chalov ◽  
Margarita Pashkina ◽  
...  

The partitioning of metals and metalloids between their dissolved and suspended forms in river systems largely governs their mobility and bioavailability. However, most of the existing knowledge about catchment-scale metal partitioning in river systems is based on a limited number of observation points, which is not sufficient to characterize the complexity of large river systems. Here we present an extensive field-based dataset, composed of multi-year data from over 100 monitoring locations distributed over the large, transboundary Selenga River basin (of Russia and Mongolia), sampled during different hydrological seasons. The aim is to investigate on the basin scale, the influence of different hydroclimatic conditions on metal partitioning and transport. Our results showed that the investigated metals exhibited a wide range of different behaviors. Some metals were mostly found in the dissolved form (84–96% of Mo, U, B, and Sb on an average), whereas many others predominantly existed in suspension (66–87% of Al, Fe, Mn, Pb, Co, and Bi). Nevertheless, our results also showed a consistently increasing share of metals in dissolved form as the metals were transported to the downstream parts of the basin, closer to the Lake Baikal. Under high discharge conditions (including floods), metal transport by suspended particulate matter was significantly greater (about 2–6 times). However, since high and low water conditions could prevail simultaneously at a given point of time within the large river basin, e.g., as a result of on-going flood propagation, snap-shot observations of metal partitioning demonstrated contrasting patterns with domination of both particulate and dissolved phases in different parts of the basin. Such heterogeneity of metal partitioning is likely to be found in many large river systems. These results point out the importance of looking into different hydroclimatic conditions across space and time, both for management purposes and contaminant modeling efforts at the basin scale.


2020 ◽  
Vol 27 (31) ◽  
pp. 39413-39426 ◽  
Author(s):  
Wan Su ◽  
Juan Tao ◽  
Jun Wang ◽  
Chengzhi Ding

2009 ◽  
Vol 24 (1) ◽  
pp. 103-108 ◽  
Author(s):  
David P. Herzog ◽  
David E. Ostendorf ◽  
Robert A. Hrabik ◽  
Valerie A. Barko
Keyword(s):  

2010 ◽  
Vol 24 (14) ◽  
pp. 4121-4160 ◽  
Author(s):  
Valentina Krysanova ◽  
Chris Dickens ◽  
Jos Timmerman ◽  
Consuelo Varela-Ortega ◽  
Maja Schlüter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document