scholarly journals River Water Quality of the Selenga-Baikal Basin: Part II—Metal Partitioning under Different Hydroclimatic Conditions

Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2392
Author(s):  
Nikolay Kasimov ◽  
Galina Shinkareva ◽  
Mikhail Lychagin ◽  
Sergey Chalov ◽  
Margarita Pashkina ◽  
...  

The partitioning of metals and metalloids between their dissolved and suspended forms in river systems largely governs their mobility and bioavailability. However, most of the existing knowledge about catchment-scale metal partitioning in river systems is based on a limited number of observation points, which is not sufficient to characterize the complexity of large river systems. Here we present an extensive field-based dataset, composed of multi-year data from over 100 monitoring locations distributed over the large, transboundary Selenga River basin (of Russia and Mongolia), sampled during different hydrological seasons. The aim is to investigate on the basin scale, the influence of different hydroclimatic conditions on metal partitioning and transport. Our results showed that the investigated metals exhibited a wide range of different behaviors. Some metals were mostly found in the dissolved form (84–96% of Mo, U, B, and Sb on an average), whereas many others predominantly existed in suspension (66–87% of Al, Fe, Mn, Pb, Co, and Bi). Nevertheless, our results also showed a consistently increasing share of metals in dissolved form as the metals were transported to the downstream parts of the basin, closer to the Lake Baikal. Under high discharge conditions (including floods), metal transport by suspended particulate matter was significantly greater (about 2–6 times). However, since high and low water conditions could prevail simultaneously at a given point of time within the large river basin, e.g., as a result of on-going flood propagation, snap-shot observations of metal partitioning demonstrated contrasting patterns with domination of both particulate and dissolved phases in different parts of the basin. Such heterogeneity of metal partitioning is likely to be found in many large river systems. These results point out the importance of looking into different hydroclimatic conditions across space and time, both for management purposes and contaminant modeling efforts at the basin scale.

2017 ◽  
Vol 68 (9) ◽  
pp. 1618 ◽  
Author(s):  
Jie Liu ◽  
Dan Ma ◽  
Lili Ma ◽  
Yuhao Song ◽  
Guanghai Gao ◽  
...  

Bacteria with low nucleic acid content (LNA) and high nucleic acid content (HNA) are widely distributed in aquatic environments. Most of the current understanding of these two subgroups is derived from studies in marine environments. In comparison, information on the spatial distribution of these two subgroups in freshwater environments is very limited. The present study analysed the biogeographical pattern of those two groups on a large-river scale (i.e. the Songhua River catchment, >1000km). The results showed that the concentrations of LNA and HNA bacteria were distributed over a wide range from 5.45×104 to 4.43×106cellsmL–1, and from 1.35×105 to 4.37×106cellsmL–1 respectively. The two groups have almost equal proportions in the Songhua River, with the average contribution of LNA bacteria reaching 47.0%. In comparison, the abundance of LNA bacteria in the mainstream was significantly higher than in the tributaries. The cytometric expressions (green fluorescence and side scatter) within LNA and HNA were strongly covaried, which implies that these two subgroups are intrinsically linked. Multivariate redundancy analysis indicated that both the abundance and cytometric characteristics of co-occurring LNA and HNA bacteria were regulated differently in the Songhua River. This suggests that LNA and HNA bacteria play different ecological roles in river ecosystems.


2002 ◽  
Vol 59 (12) ◽  
pp. 1874-1885 ◽  
Author(s):  
Cecily C.Y Chang ◽  
Carol Kendall ◽  
Steven R Silva ◽  
William A Battaglin ◽  
Donald H Campbell

A study was conducted to determine whether NO3– stable isotopes (δ15N and δ18O), at natural abundance levels, could discriminate among NO3– sources from sites with different land uses at the basin scale. Water samples were collected from 24 sites in the Mississippi River Basin from five land-use categories: (1) large river basins (>34 590 km2) draining multiple land uses and smaller basins in which the predominant land use was (2) urban, (3) undeveloped, (4) crops, or (5) crops and livestock. Our data suggest that riverine nitrates from different land uses have overlapping but moderately distinct isotopic signatures. δ18O data were critical in showing abrupt changes in NO3– source with discharge. The isotopic values of large rivers resembled crop sites, sites with livestock tended to have δ15N values characteristic of manure, and urban sites tended to have high δ18O values characteristic of atmospheric nitrate.


2020 ◽  
Vol 79 (19) ◽  
Author(s):  
Naeem Saddique ◽  
Talha Mahmood ◽  
Christian Bernhofer

Abstract Land use and land cover (LULC) change is one of the key driving elements responsible for altering the hydrology of a watershed. In this study, we investigated the spatio-temporal LULC changes between 2001 and 2018 and their impacts on the water balance of the Jhelum River Basin. The Soil and Water Assessment Tool (SWAT) was used to analyze the impacts on water yield (WY) and evapotranspiration (ET). The model was calibrated and validated with discharge data between 1995 and 2005 and then simulated with different land use. The increase was observed in forest, settlement and water areas during the study period. At the catchment scale, we found that afforestation has reduced the WY and surface runoff, while enhanced the ET. Moreover, this change was more pronounced at the sub-basin scale. Some sub-basins, especially in the northern part of the study area, exhibited an increase in WY due to an increase in the snow cover area. Similarly, extremes land use scenarios also showed significant impact on water balance components. The basin WY has decreased by 38 mm/year and ET has increased about 36 mm/year. The findings of this study could guide the watershed manager in the development of sustainable LULC planning and water resources management.


2020 ◽  
Author(s):  
Jefferson Wong ◽  
Fuad Yassin ◽  
James Famiglietti

<p>Obtaining reliable precipitation measurements and accurate spatiotemporal distribution of precipitation remains as a challenging task for driving Hydrologic-Land Surface Models (H-LSMs) and better hydrological simulations and predictions. To further improve the accuracy of precipitation estimation for hydrological applications, the idea of generating a hybrid dataset by combining existing precipitation products has become a more appealing approach in recent years. The reliability of the hybrid dataset is evaluated against in-situ climate stations and error characteristics are calculated to compare to the existing products. However, the robustness of the hybrid dataset in representing spatial details could be problematic when evaluated only using a sparse network of in-situ observations at regional or basin scales. This study aims to develop a methodological framework that combines multiple precipitation products based on evaluation against not only climate stations but also streamflow stations that are spatially representative across large river basin. The framework is illustrated using a Canadian H-LSM named MESH (Modélisation Environmentale communautaire - Surface Hydrology) in the Saskatchewan River basin, Canada over the period of 2002 to 2012. Five existing precipitation datasets are considered as the candidates for generating the hybrid dataset. The framework consists of three components. The first component evaluates each precipitation candidate against the local gauge data for benchmarking, runs each candidate through MESH with 10 km spatial resolution and default parameterization, and calculates the overall streamflow performance in each sub-basins with equal weighting of three evaluation metrics. The second component generates the hybrid dataset by combining the best performing candidates (annual or seasonal) at sub-basin scale. The third component assesses the performance of the hybrid dataset at downstream gauge stations along the mainstream as a validation mechanism for comparison with the performance of the candidate datasets. Results shows that the hybrid dataset is able to perform equally well with the existing precipitation products in the headwater while improve the streamflow performance downstream. The successful application of the framework in this river basin could build the foundation and the confidence in applying the combination method to data-limited river basins in northern Canada.</p>


2020 ◽  
Author(s):  
Laddaporn Ruangpan ◽  
Jasna Plavšić ◽  
Zoran Voijnovic ◽  
Tobias Bahlmann ◽  
Alida Alves ◽  
...  

<p>The evidence to date shows that hydro-meteorological risks are likely to become more extreme in the foreseeable future. The continuously changing climate has also led to increasing pressure on the environment and human society. For these reasons, effective and sustainable methods for hydro-meteorological risk management are becoming more important. As an umbrella concept, Nature-Based Solutions (NBS) have been promoted due to their potential in reducing hydro-meteorological risk, adapting to climate change, and providing a wide range of co-benefits to nature and human well-being. The procedure of efficient planning and selection of NBS is a complex process that requires the involvement of multiple stakeholders. Measures need to be evaluated taking into account their primary function for hydro-meteorological risk reduction, potential co-benefits and specific local requirements. This paper presents a methodology to select NBS measures for reducing hydro-meteorological risk and increase co-benefits at the river basin scale. This is achieved by using stakeholder opinion to identify the importance of benefits and NBS in the area under consideration. A broad range of benefits has been included, such as risk reduction, water quality, habitat structure, biodiversity, socio-economic, and human well-being. This methodology has been applied to the case study of Tamnava River Basin in Serbia from RECONECT project. The results from this case study highlight the importance of involving local stakeholders in early stages of selection and implementation of NBS as part of the wider stakeholder co-creation process. The results also indicate the potential of the new methodology to assist decision-makers in the selection and implementation of NBS.</p>


1999 ◽  
Vol 40 (10) ◽  
pp. 103-110
Author(s):  
Carlo De Marchi ◽  
Pavel Ivanov ◽  
Ari Jolma ◽  
Ilia Masliev ◽  
Mark Griffin Smith ◽  
...  

This paper presents the major features of two decision support systems (DSS) for river water quality modeling and policy analysis recently developed at the International Institute of Applied Systems Analysis (IIASA), DESERT and STREAMPLAN. DESERT integrates in a single package data management, model calibration, simulation, optimization and presentation of results. DESERT has the flexibility to allow the specification of both alternative water quality models and flow hydraulics for different branches of the same river basin. Specification of these models can be done interactively through Microsoft® Windows commands and menus and an easy to use interpreted language. Detailed analysis of the effects of parameter uncertainty on water quality results is integrated into DESERT. STREAMPLAN, on the other hand, is an integrated, easy-to-use software system for analyzing alternative water quality management policies on a river basin level. These policies include uniform emission reduction and effluent standard based strategies, ambient water quality and least-cost strategies, total emission reduction under minimized costs, mixed strategies, local and regional policies, and strategies with economic instruments. A distinctive feature of STREAMPLAN is the integration of a detailed model of municipal wastewater generation with a water quality model and policy analysis tools on a river basin scale.


1999 ◽  
Vol 40 (10) ◽  
pp. 1-8 ◽  
Author(s):  
T. Botterweg ◽  
D. W. Rodda

An Internationally funded Programme, involving the European Commission, the Global Environment Facility managed by UN Development Programme, the World Bank and the European Bank for Reconstruction and Development, is addressing river basin problems in a unique situation. The solution of these should lead to the prevention of pollution and better water quality, protected ecosystems, sustainable water resources and more efficient sewerage and waste water treatment facilities for the 90 million population living in the region and the reduction of pollution impact on the Black Sea into which the Danube River flows. The paper introduces current Programme activities, the challenges being met and progress. Work is described for implementing a monitoring strategy, an accident emergency warning system and implementation of the 1994 Strategic Action Plan. The applied research activity is explained. The Programme is a major activity with many elements addressing a wide range of environmental problems in the catchment of a major international waterway.


Sign in / Sign up

Export Citation Format

Share Document