Template Matching Techniques in Computer Vision

Author(s):  
Roberto Brunelli
2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Tao Xiang ◽  
Tao Li ◽  
Mao Ye ◽  
Zijian Liu

Pedestrian detection with large intraclass variations is still a challenging task in computer vision. In this paper, we propose a novel pedestrian detection method based on Random Forest. Firstly, we generate a few local templates with different sizes and different locations in positive exemplars. Then, the Random Forest is built whose splitting functions are optimized by maximizing class purity of matching the local templates to the training samples, respectively. To improve the classification accuracy, we adopt a boosting-like algorithm to update the weights of the training samples in a layer-wise fashion. During detection, the trained Random Forest will vote the category when a sliding window is input. Our contributions are the splitting functions based on local template matching with adaptive size and location and iteratively weight updating method. We evaluate the proposed method on 2 well-known challenging datasets: TUD pedestrians and INRIA pedestrians. The experimental results demonstrate that our method achieves state-of-the-art or competitive performance.


Author(s):  
E. Dall'Asta ◽  
R. Roncella

Encouraged by the growing interest in automatic 3D image-based reconstruction, the development and improvement of robust stereo matching techniques is one of the most investigated research topic of the last years in photogrammetry and computer vision.<br><br> The paper is focused on the comparison of some stereo matching algorithms (local and global) which are very popular both in photogrammetry and computer vision. In particular, the Semi-Global Matching (SGM), which realizes a pixel-wise matching and relies on the application of consistency constraints during the matching cost aggregation, will be discussed.<br><br> The results of some tests performed on real and simulated stereo image datasets, evaluating in particular the accuracy of the obtained digital surface models, will be presented. Several algorithms and different implementation are considered in the comparison, using freeware software codes like MICMAC and OpenCV, commercial software (e.g. Agisoft PhotoScan) and proprietary codes implementing Least Square e Semi-Global Matching algorithms. The comparisons will also consider the completeness and the level of detail within fine structures, and the reliability and repeatability of the obtainable data.


2021 ◽  
Author(s):  
Cedric Twardzik ◽  
Mathilde Vergnolle ◽  
Anthony Sladen ◽  
Louisa L. H. Tsang

Abstract. It is well-established that the post-seismic slip results from the combined contribution of seismic slip and aseismic slip. However, the partitioning between these two modes of slip remains unclear due to the difficulty to infer detailed and robust descriptions of how both evolve in space and time. This is particularly true just after a mainshock when both processes are expected to be the strongest. Using state-of-the-art sub-daily processing of GNSS data, along with dense catalogs of aftershocks obtained from template-matching techniques, we unravel the spatiotemporal evolution of post-seismic slip and aftershocks over the first 12 hours following the 2015 Mw8.3 Illapel, Chile, earthquake. We show that the very early post-seismic activity occurs over two regions with distinct behaviors. To the north, post-seismic slip appears to be purely aseismic and precedes the occurrence of late aftershocks. To the south, aftershocks are the primary cause of the post-seismic slip. We suggest that this difference in behavior could be inferred only few hours after the mainshock, and thus could contribute to a more data-driven forecasts of long-term aftershocks.


2013 ◽  
pp. 381-421 ◽  
Author(s):  
Mario Vento ◽  
Pasquale Foggia

Many computer vision applications require a comparison between two objects, or between an object and a reference model. When the objects or the scenes are represented by graphs, this comparison can be performed using some form of graph matching. The aim of this chapter is to introduce the main graph matching techniques that have been used for computer vision, and to relate each application with the techniques that are most suited to it.


Author(s):  
Mario Vento ◽  
Pasquale Foggia

Many computer vision applications require a comparison between two objects, or between an object and a reference model. When the objects or the scenes are represented by graphs, this comparison can be performed using some form of graph matching. The aim of this chapter is to introduce the main graph matching techniques that have been used for computer vision, and to relate each application with the techniques that are most suited to it.


2019 ◽  
Vol 9 (7) ◽  
pp. 1385 ◽  
Author(s):  
Luca Donati ◽  
Eleonora Iotti ◽  
Giulio Mordonini ◽  
Andrea Prati

Visual classification of commercial products is a branch of the wider fields of object detection and feature extraction in computer vision, and, in particular, it is an important step in the creative workflow in fashion industries. Automatically classifying garment features makes both designers and data experts aware of their overall production, which is fundamental in order to organize marketing campaigns, avoid duplicates, categorize apparel products for e-commerce purposes, and so on. There are many different techniques for visual classification, ranging from standard image processing to machine learning approaches: this work, made by using and testing the aforementioned approaches in collaboration with Adidas AG™, describes a real-world study aimed at automatically recognizing and classifying logos, stripes, colors, and other features of clothing, solely from final rendering images of their products. Specifically, both deep learning and image processing techniques, such as template matching, were used. The result is a novel system for image recognition and feature extraction that has a high classification accuracy and which is reliable and robust enough to be used by a company like Adidas. This paper shows the main problems and proposed solutions in the development of this system, and the experimental results on the Adidas AG™ dataset.


2019 ◽  
Author(s):  
Guillaume Jouvet ◽  
Eef van Dongen ◽  
Martin P. Lüthi ◽  
Andreas Vieli

Abstract. Measuring the ice flow motion accurately is essential to better understand the time evolution of glaciers and ice sheets, and therefore to better anticipate the future consequence of climate change in terms of sea-level rise. Although there exist a variety of remote sensing methods to fill this task, in-situ measurements are always needed for validation or to capture high temporal resolution movements. Yet glaciers are in general hostile environments where the installation of instruments might be tedious and risky when not impossible. Here we report the first-ever in-situ measurements of ice flow motion using a remotely controlled Unmanned Aerial Vehicle (UAV). We used a multicopter UAV to land on a highly crevassed area of Eqip Sermia Glacier, West Greenland, to measure the displacement of the glacial surface with the aid of an on-board differential GNSS receiver. Despite the unfortunate loss of the UAV, we measured approximately 70 cm of displacement over 4.36 hours without setting foot onto the glacier – a result validated by applying UAV photogrammetry and template matching techniques. Our study demonstrates that UAVs are promising instruments for in-situ monitoring, and have a great potential for capturing short-term ice flow variations in inaccessible glaciers – a task that remote sensing techniques can hardly achieve.


2011 ◽  
Vol 217-218 ◽  
pp. 27-32
Author(s):  
Guo Feng Qin ◽  
Yu Sun ◽  
Qi Yan Li

Detection of vehicles plays an important role in the area of the modern intelligent traffic management. And the pattern recognition is a hot issue in the area of computer vision. This article introduces an Automobile Automatic Recognition System based on image. It begins with the structures of the system. Then detailed methods for implementation are discussed. This system take use of a camera to get traffic images, then after image pretreatment and segmentation, do the works of feature extraction, template matching and pattern recognition, to identify different models and get vehicular traffic statistics. Finally, the implementation of the system is introduced. The algorithms of recognized process were verified in this application case.


Sign in / Sign up

Export Citation Format

Share Document