Gaussian Basis Set Hartree-Fock, Density Functional Theory, and Beyond on GPUs

Author(s):  
Nathan Luehr ◽  
Aaron Sisto ◽  
Todd J. Martínez
2021 ◽  
pp. 102829
Author(s):  
David B. Williams-Young ◽  
Abhishek Bagusetty ◽  
Wibe A. de Jong ◽  
Douglas Doerfler ◽  
Hubertus J.J. van Dam ◽  
...  

2000 ◽  
Vol 55 (9-10) ◽  
pp. 769-771 ◽  

Abstract Molecular orbital calculations were performed for the six saturated alkylamines (CH3NH2 , (CH3)2 NH, (CH 3)3 N, CH 3CH2NH2 , (CH3)2 CHNH2 , (CH3)3 CNH2), their protonated cations (CH3NH3 + , (CH3)2NH2 + , (CH3)3NH + , CH3CH2NH3 + , (CH3)2CHNH3 + , (CH3)3CNH3+), and (CH3)4 N + using the Hartree-Fock, second-order M0ller-Plesset, and density functional theory methods with the 6-311+G(d,p) basis set. Protonation lengthens the C-N bonds of the amines by 0.05 -0.08 Å and shortens the C-C bonds of CH3CH2NH2, (CH3)2CHNH2 , and (CH3)3CNH2 by ca. 0.01 Å.


2016 ◽  
Vol 34 (4) ◽  
pp. 886-904 ◽  
Author(s):  
Meryem Evecen ◽  
Hasan Tanak

AbstractIn this paper, the molecular geometry, vibrational frequencies and chemical shifts of (6-Methoxy-2-oxo-2H-chromen-4-yl)methyl pyrrolidine-1-carbodithioate in the ground state have been calculated using the Hartree-Fock and density functional methods with the 6-311++G(d,p) basis set. To investigate the nonlinear optical properties of the title compound, the polarizability and the first hyperpolarizability were calculated. The conformational properties of the molecule have been determined by analyzing molecular energy properties. Using the time dependent density functional theory, electronic absorption spectra have been calculated. Frontier molecular orbitals, natural bond orbitals, natural atomic charges and thermodynamical parameters were also investigated by using the density functional theory calculations.


2018 ◽  
Vol 22 (2) ◽  
pp. 1-11
Author(s):  
Bhawani Datt Joshi ◽  
Janga Bahadur Khadka ◽  
Atamram Bhatt

 We have presented molecular structure and vibrational wavenumber assignments of 7-methyl-2,3-dihydro-(1,3)thiazolo(3,2-a)pyrimidin-5-one. Both ab initio Hartree-Fock and density functional theory employing 6-311++G(d,p) basis set have been used for the calculations. The scaled values of the calculated vibrational frequencies were used for assignments on the basis of potential energy distribution. The structure-activity relation has been interpreted by mapping molecular electrostatic potential surface. Electronic properties have been analyzed by using time dependent density functional theory (TD-DFT) for both gaseous and solvent phase. The calculated HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) energy values show that the charge transfer occurs within the molecule. Journal of Institute of Science and TechnologyVolume 22, Issue 2, January 2018, Page: 1-11 


2008 ◽  
Vol 63 (3-4) ◽  
pp. 175-182 ◽  
Author(s):  
Adnan Sağlam ◽  
Fatih Ucun

The optimized molecular structures, vibrational frequencies and corresponding vibrational assignments of the two planar O-cis and O-trans rotomers of 2,4-, 2,5- and 2,6-difluorobenzaldehyde have been calculated using ab initio Hartree-Fock (HF) and density functional theory (B3LYP) methods with the 6-311++G(d,p) basis set level. The calculations were adapted to the CS symmetries of all the molecules. The O-trans rotomers with lower energy of all the compounds have been found as preferential rotomers in the ground state. The mean vibrational deviations between the vibrational frequency values of the two conformers of all the compounds have been shown to increase while the relative energies increase, and so it has been concluded that the higher the relative energy between the two conformers the bigger is the mean vibrational deviation.


2010 ◽  
Vol 7 (2) ◽  
pp. 449-455
Author(s):  
S. D. S. Chauhan ◽  
A.K. Sharma ◽  
R. Kumar ◽  
D. Kulshreshtha ◽  
R. Gupta ◽  
...  

Vibrational frequencies of aniline in gas phase have been calculated and each of their modes of vibration assigned properly at RHF and DFT with 6-31G(d) basis set. In the present study, it has been observed that the 6-31G(d) basis set at both RHF and DFT levels of calculations provides better agreement to the experimental findings as compared to other basis sets. Simultaneously, Density functional theory is found to be superior to its counterpart Hartree Fock method.


Author(s):  
Virupakshi M. Bhumannavar

Abstract: The structural confirmation of the 1-(4-Bromophenyl)-3-(2-chloro-6-fluorophenyl) prop-2-en-1-one compound is done by experimental techniques. Experimental techniques FTIR, proton NMR, UV-Visible, performed for the compound. The experimentally obtained results are compared with density functional theory obtained results. The decomposition and melting point of the compound is obtained by TGA & DTA. Density functional theory is performed for the 1-(4-Bromophenyl)-3-(2- chloro-6-fluorophenyl) prop-2-en-1-one compound B3LYP/6-311G++(d,p) basis set. Time dependent density functional theory calculated for three different methods B3LYP, Hartree-Fock and CAMB3LYP also employed for the 2C6FBC at 6-311G++(d,p) basis set. Keywords: DFT Study, HOMO-LUMO, FTIR, 1H NMR, TGA/DTA, chalcone


Sign in / Sign up

Export Citation Format

Share Document