scholarly journals Synthesis and Structure Characterization of 1-(4-Bromophenyl)-3-(2-Chloro-6-Fluorophenyl) Prop-2-En-1-One Using Spectroscopic Techniques and Density Functional Theory

Author(s):  
Virupakshi M. Bhumannavar

Abstract: The structural confirmation of the 1-(4-Bromophenyl)-3-(2-chloro-6-fluorophenyl) prop-2-en-1-one compound is done by experimental techniques. Experimental techniques FTIR, proton NMR, UV-Visible, performed for the compound. The experimentally obtained results are compared with density functional theory obtained results. The decomposition and melting point of the compound is obtained by TGA & DTA. Density functional theory is performed for the 1-(4-Bromophenyl)-3-(2- chloro-6-fluorophenyl) prop-2-en-1-one compound B3LYP/6-311G++(d,p) basis set. Time dependent density functional theory calculated for three different methods B3LYP, Hartree-Fock and CAMB3LYP also employed for the 2C6FBC at 6-311G++(d,p) basis set. Keywords: DFT Study, HOMO-LUMO, FTIR, 1H NMR, TGA/DTA, chalcone

2021 ◽  
Vol 4 (4) ◽  
pp. 236-251
Author(s):  
A. S. Gidado ◽  
L. S. Taura ◽  
A. Musa

Pyrene (C16H10) is an organic semiconductor which has wide applications in the field of organic electronics suitable for the development of organic light emitting diodes (OLED) and organic photovoltaic cells (OPV). In this work, Density Functional Theory (DFT) using Becke’s three and Lee Yang Parr (B3LYP) functional with basis set 6-311++G(d, p) implemented in Gaussian 03 package was  used to compute total energy, bond parameters, HOMO-LUMO energy gap, electron affinity, ionization potential, chemical reactivity descriptors, dipole moment, isotropic polarizability (α), anisotropy of polarizability ( Δ∝) total first order hyper-polarizability () and second order hyperpolarizability (). The molecules used are pyrene, 1-chloropyrene and 4-chloropyrene  in gas phase and in five different solvents: benzene, chloroform, acetone, DMSO and water. The results obtained show that solvents and chlorination actually influenced the properties of the molecules. The isolated pyrene in acetone has the largest value of HOMO-LUMO energy gap of and is a bit closer to a previously reported experimental value of  and hence is the most stable. Thus, the pyrene molecule has more kinetic stability and can be described as low reactive molecule. The calculated dipole moments are in the order of 4-chloropyrene (1.7645 D) < 1-chloropyrene (1.9663 D) in gas phase. The anisotropy of polarizability ( for pyrene and its derivatives were found to increase with increasing polarity of the solvents.  In a nutshell, the molecules will be promising for organic optoelectronic devices based on their computed properties as reported by this work.


2019 ◽  
Vol 32 (2) ◽  
pp. 401-407
Author(s):  
M. Dinesh Kumar ◽  
P. Rajesh ◽  
R. Priya Dharsini ◽  
M. Ezhil Inban

The quantum chemical calculations of organic compounds viz. (E)-1-(2,6-bis(4-chlorophenyl)-3-ethylpiperidine-4-ylidene)-2-phenyl-hydrazine (3ECl), (E)-1-(2,6-bis(4-chlorophenyl)-3-methylpiperidine-4-ylidene)-2-phenylhydrazine (3MCl) and (E)-1-(2,6-bis(4-chloro-phenyl)-3,5-dimethylpiperidine-4-ylidene)-2-phenylhydrazine (3,5-DMCl) have been performed by density functional theory (DFT) using B3LYP method with 6-311G (d,p) basis set. The electronic properties such as Frontier orbital and band gap energies have been calculated using DFT. Global reactivity descriptor has been computed to predict chemical stability and reactivity of the molecule. The chemical reactivity sites of compounds were predicted by mapping molecular electrostatic potential (MEP) surface over optimized geometries and comparing these with MEP map generated over crystal structures. The charge distribution of molecules predict by using Mulliken atomic charges. The non-linear optical property was predicted and interpreted the dipole moment (μ), polarizability (α) and hyperpolarizability (β) by using density functional theory.


2000 ◽  
Vol 55 (9-10) ◽  
pp. 769-771 ◽  

Abstract Molecular orbital calculations were performed for the six saturated alkylamines (CH3NH2 , (CH3)2 NH, (CH 3)3 N, CH 3CH2NH2 , (CH3)2 CHNH2 , (CH3)3 CNH2), their protonated cations (CH3NH3 + , (CH3)2NH2 + , (CH3)3NH + , CH3CH2NH3 + , (CH3)2CHNH3 + , (CH3)3CNH3+), and (CH3)4 N + using the Hartree-Fock, second-order M0ller-Plesset, and density functional theory methods with the 6-311+G(d,p) basis set. Protonation lengthens the C-N bonds of the amines by 0.05 -0.08 Å and shortens the C-C bonds of CH3CH2NH2, (CH3)2CHNH2 , and (CH3)3CNH2 by ca. 0.01 Å.


2016 ◽  
Vol 34 (4) ◽  
pp. 886-904 ◽  
Author(s):  
Meryem Evecen ◽  
Hasan Tanak

AbstractIn this paper, the molecular geometry, vibrational frequencies and chemical shifts of (6-Methoxy-2-oxo-2H-chromen-4-yl)methyl pyrrolidine-1-carbodithioate in the ground state have been calculated using the Hartree-Fock and density functional methods with the 6-311++G(d,p) basis set. To investigate the nonlinear optical properties of the title compound, the polarizability and the first hyperpolarizability were calculated. The conformational properties of the molecule have been determined by analyzing molecular energy properties. Using the time dependent density functional theory, electronic absorption spectra have been calculated. Frontier molecular orbitals, natural bond orbitals, natural atomic charges and thermodynamical parameters were also investigated by using the density functional theory calculations.


2018 ◽  
Vol 22 (2) ◽  
pp. 1-11
Author(s):  
Bhawani Datt Joshi ◽  
Janga Bahadur Khadka ◽  
Atamram Bhatt

 We have presented molecular structure and vibrational wavenumber assignments of 7-methyl-2,3-dihydro-(1,3)thiazolo(3,2-a)pyrimidin-5-one. Both ab initio Hartree-Fock and density functional theory employing 6-311++G(d,p) basis set have been used for the calculations. The scaled values of the calculated vibrational frequencies were used for assignments on the basis of potential energy distribution. The structure-activity relation has been interpreted by mapping molecular electrostatic potential surface. Electronic properties have been analyzed by using time dependent density functional theory (TD-DFT) for both gaseous and solvent phase. The calculated HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) energy values show that the charge transfer occurs within the molecule. Journal of Institute of Science and TechnologyVolume 22, Issue 2, January 2018, Page: 1-11 


2008 ◽  
Vol 63 (3-4) ◽  
pp. 175-182 ◽  
Author(s):  
Adnan Sağlam ◽  
Fatih Ucun

The optimized molecular structures, vibrational frequencies and corresponding vibrational assignments of the two planar O-cis and O-trans rotomers of 2,4-, 2,5- and 2,6-difluorobenzaldehyde have been calculated using ab initio Hartree-Fock (HF) and density functional theory (B3LYP) methods with the 6-311++G(d,p) basis set level. The calculations were adapted to the CS symmetries of all the molecules. The O-trans rotomers with lower energy of all the compounds have been found as preferential rotomers in the ground state. The mean vibrational deviations between the vibrational frequency values of the two conformers of all the compounds have been shown to increase while the relative energies increase, and so it has been concluded that the higher the relative energy between the two conformers the bigger is the mean vibrational deviation.


Sign in / Sign up

Export Citation Format

Share Document