Normal Glucose Metabolism and Responses to Hypoglycaemia

Author(s):  
Ian A. Macdonald ◽  
Paromita King
2018 ◽  
Vol 50 (05) ◽  
pp. 408-413 ◽  
Author(s):  
Sema Dogansen ◽  
Gulsah Yalin ◽  
Seher Tanrikulu ◽  
Sema Yarman

AbstractIn this study, we aimed to evaluate the presence of glucose metabolism abnormalities and their impact on IGF-1 levels in patients with acromegaly. Ninety-three patients with acromegaly (n=93; 52 males/41 females) were included in this study. Patients were separated into three groups such as; normal glucose tolerance (n=23, 25%), prediabetes (n=38, 41%), and diabetes mellitus (n=32, 34%). Insulin resistance was calculated with homeostasis model assessment (HOMA). HOMA-IR > 2.5 or ≤2.5 were defined as insulin resistant or noninsulin resistant groups, respectively. Groups were compared in terms of factors that may be associated with glucose metabolism abnormalities. IGF-1% ULN (upper limit of normal)/GH ratios were used to evaluate the impact of glucose metabolism abnormalities on IGF-1 levels. Patients with diabetes mellitus were significantly older with an increased frequency of hypertension (p<0.001, p=0.01, respectively). IGF-1% ULN/GH ratio was significantly lower in prediabetes group than in normal glucose tolerance group (p=0.04). Similarly IGF-1% ULN/GH ratio was significantly lower in insulin resistant group than in noninsulin resistant group (p=0.04). Baseline and suppressed GH levels were significantly higher in insulin resistant group than in noninsulin resistant group (p=0.024, p<0.001, respectively). IGF-1% ULN/GH ratio is a useful marker indicating glucose metabolism disorders and IGF-1 levels might be inappropriately lower in acromegalic patients with insulin resistance or prediabetes. We suggest that IGF-1 levels should be re-evaluated after the improvement of insulin resistance or glycemic regulation for the successful management of patients with acromegaly.


1996 ◽  
Vol 270 (6) ◽  
pp. R1371-R1379 ◽  
Author(s):  
K. L. Teff ◽  
K. Engelman

In animals, bypassing the oropharyngeal receptors by intragastric administration of glucose results in glucose intolerance. To determine whether the absence of oral sensory stimulation alters glucose tolerance in humans, we monitored plasma levels of glucose and hormones after intragastric administration of glucose, with and without subjects tasting food. Plasma glucose area under the curve (AUC) was significantly lower after oral sensory stimulation (3,433 +/- 783 vs. 5,643 +/- 1,397 mg.dl-1. 195 min-1; P < 0.03; n = 8). Insulin and C-peptide AUCs were higher during the first one-half of the sampling period (insulin, 5,771 +/- 910 vs. 4,295 +/- 712 microU. ml-1.75 min-1; P < 0.05; C-peptide, 86 +/- 10 vs. 66 +/- 9 ng.ml-1. 75 min-1; P < 0.03) and lower during the second one-half of the sampling period compared with the control condition (1,010 +/- 233 vs. 2,106 microU.ml-1. 120 min-1; P < 0.025; 31 +/- 8 vs. 56 +/- 18 ng.ml-1. 120 min-1; P < 0.05; insulin and C-peptide, respectively). Oral sensory stimulation markedly increased plasma glucagon compared with the control condition (1,258 +/- 621 vs. -2,181 +/- 522 pg.ml-1. 195 min-1; P < 0.002). These data provide evidence in humans that oral sensory stimulation influences glucose metabolism and suggest that the mechanisms elicited by this cephalic stimulation are necessary for normal glucose homeostasis.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Xue Li ◽  
Wenhong Yang ◽  
Yanning Fang

Gestational diabetes mellitus (GDM) refers to the condition which shows abnormal glucose metabolism that occurs during pregnancy, while normal glucose metabolism before pregnancy. In the present study, a novel analytical procedure was used to explore the key molecule of gestational diabetes mellitus. First, the weighted pathway model was carried out subsequently to eliminate the gene-overlapping effects among pathways. Second, we assessed the enriched pathways by a combination of Fisher’s t-test and the Mann–Whitney U test. We carried out the functional principal component analysis by estimating F values of genes to identify the hub genes in the enriched pathways. Results showed that a total of 4 differential pathways were enriched. The key pathway was considered as the insulin secretion pathway. F values of each gene in the key pathway were calculated. Three hub molecules were identified as hub differentially methylated genes, namely, CAMK2B, ADCYAP1, and KCNN2. In addition, by further comparing the gene expression data in a validation cohort, one key molecule was obtained, ADCYAP1. Therefore, ADCYAP1 may serve as a potential target for the treatment of GDM.


2016 ◽  
Vol 13 (4) ◽  
pp. 278-285 ◽  
Author(s):  
Pauline BC Linssen ◽  
Ronald MA Henry ◽  
Casper G Schalkwijk ◽  
Jacqueline M Dekker ◽  
Giel Nijpels ◽  
...  

Objective: To investigate whether serum advanced glycation endproducts are associated with left ventricular systolic and diastolic function in participants with normal glucose metabolism, impaired glucose metabolism and type 2 diabetes mellitus. Methods: Participants from a cross-sectional, population-based study ( n = 280 with normal glucose metabolism, n = 171 with impaired glucose metabolism, n = 242 with type 2 diabetes mellitus) underwent echocardiography. Serum protein-bound advanced glycation endproducts [i.e. Nε-(carboxymethyl)lysine, pentosidine and Nε-(carboxyethyl)lysine] were measured. Linear regression analyses were used and stratified according to glucose metabolism status. Results: In normal glucose metabolism, higher Nε-(carboxymethyl)lysine and pentosidine levels were associated with worse diastolic function (left atrial volume index and left atrial volume × left ventricular mass index product term) and higher Nε-(carboxymethyl)lysine and Nε-(carboxyethyl)lysine levels with worse systolic function (ejection fraction). In impaired glucose metabolism, a similar pattern emerged, though less consistent. In type 2 diabetes mellitus, these associations were non-existent for diastolic function or even reversed for systolic function. Conclusion: This suggests that serum advanced glycation endproducts are associated with impaired left ventricular function in normal glucose metabolism, but that with deteriorating glucose metabolism status, serum advanced glycation endproducts may not mirror heart failure risk.


Diabetes Care ◽  
2003 ◽  
Vol 26 (10) ◽  
pp. 2741-2748 ◽  
Author(s):  
E. Parretti ◽  
L. Carignani ◽  
R. Cioni ◽  
E. Bartoli ◽  
P. Borri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document