Closed-Loop Sidestreams for Investigating Corrosion Control Using Regenerative Biofilms (CCURB) in Service Water Systems

Author(s):  
Kirsten Trandem ◽  
Khaled Ismail ◽  
Peggy J. Arps ◽  
James C. Earthman
Author(s):  
Anna Viktorovna Pirog ◽  
Olga Vladimirovna Lozhnichenko

The study of the growth of blood cells and hemopoietic organs of claravia catfish ( Clarias gariepius ) grown in the closed loop water systems on the basis of "RANTOP AGRO-5" LLC in the Krasnodar region. Test materials (prolarvae and larvae aged 5, 10, 15, 20 and 25 days of active feeding) were selected in the spring-summer period of 2013-2014. Prolarvae in mesenchyma of forming mesonephros which begins to develop after hatching had primordial precursor cell and blast blood cells between forming vesicles. There took place differentiation of erythropoietic cells: erythroblasts, pronormoblasts and basophilic normoblasts. Accumulation of hemoglobin in erythrocytes indicates that since the first day of hatching, the blood starts to perform transport function - transportation of oxygen. The rudiment of thymus was observed in larvae aged 10 days. This organ generated lymphocytepoietic cells. The central hemopoietic organ - spleen - was originally registered as a mesenchymal rudiment at the age of 10 days. At the age of 25 days, development of the organ stroma is not finished in clarid catfish larvae. Reticular tissues develop actively. Separate lymphoid clumps in the spleen structure have not been found. Melano-macrofagic centres are also unformed. Qualitative analysis of haemopoiesis showed that in spleen there take place development of all types of blood cells: erythropoiesis, granulopoiesis and agranulopoiesis.


Author(s):  
Alexander M. Summe ◽  
Douglas P. Munson ◽  
Kenneth Oliphant ◽  
Sarah Chung

Degradation of service water systems is a major issue facing nuclear power plants and many plants will require repair or replacement of existing carbon steel piping components. High-density polyethylene (HDPE) has been used in non-safety service water systems for over ten years and has demonstrated superior performance. However, there still exist knowledge gaps around material properties, inspectability, and long-term performance. Specifically, there is a lack of insight on the aging of HDPE piping in disinfectant treated service water systems. This paper summarizes the methodology and results of predicting the expected life time of HDPE piping exposed to oxidizing biocides in numerous end-use scenarios. The aging mechanism of concern is Stage III Chemical-Mechanical degradation, where the polymer is oxidized by biocides and then experiences slow crack growth (SCG). An Aging Model is used to provide general predictions of pipe service life. The results were analyzed for trends and limiting or sensitive operating parameters were identified. For most applications, the specific resin used in the model demonstrated good performance for lifetimes of well over 40 years.


Opflow ◽  
2014 ◽  
Vol 40 (11) ◽  
pp. 24-27 ◽  
Author(s):  
Quirien Muylwyk ◽  
Anne Sandvig ◽  
Vern Snoeyink

Author(s):  
Eric J. Houston ◽  
Arlene S. Rahn ◽  
George J. Licina

Nuclear plant service water systems are a critical part of the facility’s infrastructure. System integrity and performance are vital for plant reliability and essential to achieving a plant life of 40 years and beyond. Corrosion, fouling (macrofouling, microfouling and sedimentation) and other effects that are detrimental to the reliability of the service water system led to the issue of NRC Generic Letter 89-13 “Service Water System Problems Affecting Safety-Related Equipment.” This generic letter continues to be a fundamental guideline for safety related service water systems at all U.S. nuclear plants. The low temperature and pressure service water piping systems are primarily degraded by corrosion. Because of the complexity and random nature of corrosion processes, it is nearly impossible to develop a mathematically deterministic model that accurately predicts pipe wall loss. However, if statistical distributions are used to describe the various corrosion processes, mathematical algorithms that incorporate all of the distributions, iterated a statistically significant number of times, can be used to forecast the most probable number of leaks. This paper predicts the condition of service water piping at Kewaunee Nuclear Power Plant using the described model and includes the expected number of through-wall leaks as a function of operating time.


2016 ◽  
Vol 87 (1) ◽  
pp. 016102
Author(s):  
Oliver Warr ◽  
Christopher A. Rochelle ◽  
Andrew J. Masters ◽  
Christopher J. Ballentine

Sign in / Sign up

Export Citation Format

Share Document