Marine Protected Areas and Offshore Wind Farms

Author(s):  
Natalie Sanders ◽  
Thomas Haynes ◽  
Paul D. Goriup
Author(s):  
Matthew Ashley ◽  
Melanie Austen ◽  
Lynda Rodwell ◽  
Stephen C. Mangi

2013 ◽  
Vol 14 (2) ◽  
pp. 235-243 ◽  

Wind energy offers significant potential for greenhouse gas emissions reductions. Most applications have been developed onshore but the planning and siting conflicts with other land uses have created considerable interest and motivated research to offshore wind energy establishments. In this paper, a systematic methodology in order to investigate the most efficient areas of offshore wind farms’ siting in Greece is performed, integrating multi-criteria decision making (MCDM) methods and Geographic Information Systems (GIS) tools. In the first level of analysis, all coastal areas that don’t fulfill a certain set of criteria (wind velocity, protected areas, water depth) are identified with the use of Geographical Information Systems (GIS) and excluded from further analysis. The Analytical Hierarchy Process is performed in the evaluation phase and pairwise comparisons provide the most appropriate sites to locate offshore wind farms. Information concerning evaluation criteria (average wind velocity, distance to protected areas, distance to ship routes, distance to the shore and distance of possible connection to the existing electricity network) is retrieved through GIS, eliminating the subjectivity in judgments. The whole methodology contributes to the portrait of the geographic analysis and stands as the last image of the space characteristics suitable for offshore wind farms.


2020 ◽  
Vol 9 (2) ◽  
pp. 96 ◽  
Author(s):  
Gusatu ◽  
Yamu ◽  
Zuidema ◽  
Faaij

Over the last decade, the accelerated transition towards cleaner means of producing energy has been clearly prioritised by the European Union through large-scale planned deployment of wind farms in the North Sea. From a spatial planning perspective, this has not been a straight-forward process, due to substantial spatial conflicts with the traditional users of the sea, especially with fisheries and protected areas. In this article, we examine the availability of offshore space for wind farm deployment, from a transnational perspective, while taking into account different options for the management of the maritime area through four scenarios. We applied a mixed-method approach, combining expert knowledge and document analysis with the spatial visualisation of existing and future maritime spatial claims. Our calculations clearly indicate a low availability of suitable locations for offshore wind in the proximity of the shore and in shallow waters, even when considering its multi-use with fisheries and protected areas. However, the areas within 100 km from shore and with a water depth above –120 m attract greater opportunities for both single use (only offshore wind farms) and multi-use (mainly with fisheries), from an integrated planning perspective. On the other hand, the decrease of energy targets combined with sectoral planning result in clear limitations to suitable areas for offshore wind farms, indicating the necessity to consider areas with a water depth below –120 m and further than 100 km from shore. Therefore, despite the increased costs of maintenance and design adaptation, the multi-use of space can be a solution for more sustainable, stakeholder-engaged and cost-effective options in the energy deployment process. This paper identifies potential pathways, as well as challenges and opportunities for future offshore space management with the aim of achieving the 2050 renewable energy targets.


2015 ◽  
Vol 14 ◽  
pp. 305-312 ◽  
Author(s):  
I. Spiropoulou ◽  
D. Karamanis ◽  
G. Kehayias

Author(s):  
Gerard Lorenz D. Maandal ◽  
Mili-Ann M. Tamayao ◽  
Louis Angelo M. Danao

Abstract The technical feasibility of off-shore wind energy in the Philippines is assessed. Geographic information system is utilized to integrate the different technical data into a single model. Off-shore wind speed data for five years at elevations 10m, 20m, 80m, and 100m from a local database was used as reference for the wind resource study. Two wind turbines were considered for the energy conversion component, Siemens SWT-3.6-120 and Senvion 6.2 M126. The wind speed data was interpolated to 90m and 95m using standard power law to match the hub heights of the turbines studied. The wind power density, wind power, and annual energy production were calculated from the interpolated wind speeds. Areas in the Philippines with capacity factor greater than 30% and performance greater than 10% were considered technically viable. Exclusion criteria were applied to narrow down the potential siting for offshore wind farms, namely, active submerged cables, local ferry routes, marine protected areas, reefs, oil and gas extraction areas, bathymetry, distance to grid, typhoons, and earthquakes. Several sites were determined to be viable with north of Cagayan having the highest capacity factor. The highest wind capacity factor for the offshore wind farms are located in north of Ilocos Norte (SWT-3.6-120: 54.48%–62.60%; 6.2M126: 54.04%–64.79%), north of Occidental Mindoro (SWT-3.6-120: 46.81%–60.92%; 6.2M126: 45.30%–62.60%) and southeast of Oriental Mindoro (SWT-3.6-120: 45.60%–59.52%; 6.2M126: 45.30%–62.60%). However, these sites are not acceptable due to technical, social, and political constraints. The constraints considered in the study are active submerged cables with a buffer of 5 km, local ferry routes with a buffer of 3km, marine protected areas with a buffer 3 km, reefs with a buffer of 3 km, oil and gas extraction areas with a buffer of 5 km, bathymetry less than 50m, distance to grid of within 120 km, historical typhoon tracks with greater than 250 kph and 50 km buffer, and historical earthquakes with greater than 6.5 magnitude with a buffer of 15 km. Upon application of these exclusion criteria, the potential sites for offshore wind farms are north of Cagayan, west of Rizal, north of Camarines Sur, north of Samar, southwest of Masbate, Dinagat Island, Guimaras, and northeast of Palawan.


2018 ◽  
Vol 596 ◽  
pp. 213-232 ◽  
Author(s):  
MJ Brandt ◽  
AC Dragon ◽  
A Diederichs ◽  
MA Bellmann ◽  
V Wahl ◽  
...  

2009 ◽  
Vol 1 (07) ◽  
pp. 809-813
Author(s):  
M. Martínez ◽  
A. Pulido ◽  
J. Romero ◽  
N. Angulo ◽  
F. Díaz ◽  
...  

Hydrobiologia ◽  
2021 ◽  
Author(s):  
Ninon Mavraki ◽  
Steven Degraer ◽  
Jan Vanaverbeke

AbstractOffshore wind farms (OWFs) act as artificial reefs, attracting high abundances of fish, which could potentially increase their local production. This study investigates the feeding ecology of fish species that abundantly occur at artificial habitats, such as OWFs, by examining the short- and the long-term dietary composition of five species: the benthopelagic Gadus morhua and Trisopterus luscus, the pelagic Scomber scombrus and Trachurus trachurus, and the benthic Myoxocephalus scorpioides. We conducted combined stomach content and stable isotope analyses to examine the short- and the time-integrated dietary composition, respectively. Our results indicated that benthopelagic and benthic species utilize artificial reefs, such as OWFs, as feeding grounds for a prolonged period, since both analyses indicated that they exploit fouling organisms occurring exclusively on artificial hard substrates. Trachurus trachurus only occasionally uses artificial reefs as oases of highly abundant resources. Scomber scombrus does not feed on fouling fauna and therefore its augmented presence in OWFs is probably related to reasons other than the enhanced food availability. The long-termed feeding preferences of benthic and benthopelagic species contribute to the hypothesis that the artificial reefs of OWFs could potentially increase the fish production in the area. However, this was not supported for the pelagic species.


Sign in / Sign up

Export Citation Format

Share Document