The Multiple Roles of Various Reactive Oxygen Species (ROS) in Photosynthetic Organisms

2015 ◽  
pp. 1-84 ◽  
Author(s):  
Franz-Josef Schmitt ◽  
Vladimir D. Kreslavski ◽  
Sergey K. Zharmukhamedov ◽  
Thomas Friedrich ◽  
Gernot Renger ◽  
...  
2002 ◽  
Vol 21 (2) ◽  
pp. 63-64 ◽  
Author(s):  
S S Deshpande ◽  
K Irani

It is becoming increasingly evident that reactive oxygen species (ROS) act at different stages of carcinogenesis, and thus play multiple roles in oncogenesis. In addition to being mutagenic and initiating tumors, ROS or carcinogens that result in ROS generation may affect tumor promotion and progression through varied effects on growth promoting, growth inhibitory, or apoptotic signaling pathways.


2012 ◽  
Vol 109 (27) ◽  
pp. E1888-E1897 ◽  
Author(s):  
L. M. T. Bradbury ◽  
M. Shumskaya ◽  
O. Tzfadia ◽  
S.-B. Wu ◽  
E. J. Kennelly ◽  
...  

2000 ◽  
Vol 355 (1402) ◽  
pp. 1385-1394 ◽  
Author(s):  
Irene Baroli ◽  
Krishna K. Niyogi

The involvement of excited and highly reactive intermediates in oxygenic photosynthesis inevitably results in the generation of reactive oxygen species. To protect the photosynthetic apparatus from oxidative damage, xanthophyll pigments are involved in the quenching of excited chlorophyll and reactive oxygen species, namely 1 Chl*, 3 Chl*, and 1 1O 2 *. Quenching of 1 Chl* results in harmless dissipation of excitation energy as heat and is measured as non–photochemical quenching (NPQ) of chlorophyll fluorescence. The multiple roles of xanthophylls in photoprotection are being addressed by characterizing mutants of Chlamydomonas reinhardtii and Arabidopsis thaliana . Analysis of Arabidopsis mutants that are defective in 1 Chl* quenching has shown that, in addition to specific xanthophylls, the psbS gene is necessary for NPQ. Double mutants of Chlamydomonas and Arabidopsis that are deficient in zeaxanthin, lutein and NPQ undergo photo–oxidative bleaching in high light. Extragenic suppressors of the Chlamydomonas npq1 lor1 double mutant identify new mutations that restore varying levels of zeaxanthin accumulation and allow survival in high light.


2009 ◽  
pp. c3 ◽  
Author(s):  
Helena M. Cochemé ◽  
Michael P. Murphy

2004 ◽  
Vol 71 ◽  
pp. 121-133 ◽  
Author(s):  
Ascan Warnholtz ◽  
Maria Wendt ◽  
Michael August ◽  
Thomas Münzel

Endothelial dysfunction in the setting of cardiovascular risk factors, such as hypercholesterolaemia, hypertension, diabetes mellitus and chronic smoking, as well as in the setting of heart failure, has been shown to be at least partly dependent on the production of reactive oxygen species in endothelial and/or smooth muscle cells and the adventitia, and the subsequent decrease in vascular bioavailability of NO. Superoxide-producing enzymes involved in increased oxidative stress within vascular tissue include NAD(P)H-oxidase, xanthine oxidase and endothelial nitric oxide synthase in an uncoupled state. Recent studies indicate that endothelial dysfunction of peripheral and coronary resistance and conductance vessels represents a strong and independent risk factor for future cardiovascular events. Ways to reduce endothelial dysfunction include risk-factor modification and treatment with substances that have been shown to reduce oxidative stress and, simultaneously, to stimulate endothelial NO production, such as inhibitors of angiotensin-converting enzyme or the statins. In contrast, in conditions where increased production of reactive oxygen species, such as superoxide, in vascular tissue is established, treatment with NO, e.g. via administration of nitroglycerin, results in a rapid development of endothelial dysfunction, which may worsen the prognosis in patients with established coronary artery disease.


2001 ◽  
Vol 120 (5) ◽  
pp. A361-A361
Author(s):  
K UCHIKURA ◽  
T WADA ◽  
Z SUN ◽  
S HOSHINO ◽  
G BULKLEY ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document