scholarly journals Molecular genetics of xanthophyll–dependent photoprotection in green algae and plants

2000 ◽  
Vol 355 (1402) ◽  
pp. 1385-1394 ◽  
Author(s):  
Irene Baroli ◽  
Krishna K. Niyogi

The involvement of excited and highly reactive intermediates in oxygenic photosynthesis inevitably results in the generation of reactive oxygen species. To protect the photosynthetic apparatus from oxidative damage, xanthophyll pigments are involved in the quenching of excited chlorophyll and reactive oxygen species, namely 1 Chl*, 3 Chl*, and 1 1O 2 *. Quenching of 1 Chl* results in harmless dissipation of excitation energy as heat and is measured as non–photochemical quenching (NPQ) of chlorophyll fluorescence. The multiple roles of xanthophylls in photoprotection are being addressed by characterizing mutants of Chlamydomonas reinhardtii and Arabidopsis thaliana . Analysis of Arabidopsis mutants that are defective in 1 Chl* quenching has shown that, in addition to specific xanthophylls, the psbS gene is necessary for NPQ. Double mutants of Chlamydomonas and Arabidopsis that are deficient in zeaxanthin, lutein and NPQ undergo photo–oxidative bleaching in high light. Extragenic suppressors of the Chlamydomonas npq1 lor1 double mutant identify new mutations that restore varying levels of zeaxanthin accumulation and allow survival in high light.

2021 ◽  
Vol 118 (25) ◽  
pp. e2022702118
Author(s):  
Haiyan Xiong ◽  
Lei Hua ◽  
Ivan Reyna-Llorens ◽  
Yi Shi ◽  
Kun-Ming Chen ◽  
...  

When exposed to high light, plants produce reactive oxygen species (ROS). In Arabidopsis thaliana, local stress such as excess heat or light initiates a systemic ROS wave in phloem and xylem cells dependent on NADPH oxidase/respiratory burst oxidase homolog (RBOH) proteins. In the case of excess light, although the initial local accumulation of ROS preferentially takes place in bundle-sheath strands, little is known about how this response takes place. Using rice and the ROS probes diaminobenzidine and 2′,7′-dichlorodihydrofluorescein diacetate, we found that, after exposure to high light, ROS were produced more rapidly in bundle-sheath strands than mesophyll cells. This response was not affected either by CO2 supply or photorespiration. Consistent with these findings, deep sequencing of messenger RNA (mRNA) isolated from mesophyll or bundle-sheath strands indicated balanced accumulation of transcripts encoding all major components of the photosynthetic apparatus. However, transcripts encoding several isoforms of the superoxide/H2O2-producing enzyme NADPH oxidase were more abundant in bundle-sheath strands than mesophyll cells. ROS production in bundle-sheath strands was decreased in mutant alleles of the bundle-sheath strand preferential isoform of OsRBOHA and increased when it was overexpressed. Despite the plethora of pathways able to generate ROS in response to excess light, NADPH oxidase–mediated accumulation of ROS in the rice bundle-sheath strand was detected in etiolated leaves lacking chlorophyll. We conclude that photosynthesis is not necessary for the local ROS response to high light but is in part mediated by NADPH oxidase activity.


2020 ◽  
Author(s):  
Haiyan Xiong ◽  
Lei Hua ◽  
Ivan Reyna-Llorens ◽  
Yi Shi ◽  
Kun-Ming Chen ◽  
...  

AbstractWhen exposed to high light plants produce reactive oxygen species (ROS). In Arabidopsis thaliana local accumulation of ROS preferentially takes place in bundle sheath strands, but little is known about how this response takes place. Using rice and the ROS probes diaminobenzidine and 2’,7’-dichlorodihydrofluorescein diacetate, we found that after exposure to high light, ROS were produced more rapidly in bundle sheath strands than mesophyll cells. This response was not affected either by CO2 supply or photorespiration. Consistent with these findings, deep sequencing of mRNA isolated from mesophyll or bundle sheath strands indicated balanced accumulation of transcripts encoding all major components of the photosynthetic apparatus. However, transcripts encoding several isoforms of the superoxide/H2O2-producing enzyme NADPH oxidase were more abundant in bundle sheath strands than mesophyll cells. ROS production in bundle sheath strands was reduced by blocking NADPH oxidase activity pharmacologically, but increased when the bundle sheath preferential RBOHA isoform of NADPH oxidase was over-expressed. NADPH oxidase mediated accumulation of ROS in the rice bundle sheath was detected in etiolated leaves lacking chlorophyll indicating that high light and NADPH oxidase-dependent ROS production is not dependent on photosynthesis.


2020 ◽  
Vol 21 (16) ◽  
pp. 5899 ◽  
Author(s):  
Adam Augustyniak ◽  
Izabela Pawłowicz ◽  
Katarzyna Lechowicz ◽  
Karolina Izbiańska-Jankowska ◽  
Magdalena Arasimowicz-Jelonek ◽  
...  

Though winter-hardiness is a complex trait, freezing tolerance was proved to be its main component. Species from temperate regions acquire tolerance to freezing in a process of cold acclimation, which is associated with the exposure of plants to low but non-freezing temperatures. However, mechanisms of cold acclimation in Lolium-Festuca grasses, important for forage production in Europe, have not been fully recognized. Thus, two L. multiflorum/F. arundinacea introgression forms with distinct freezing tolerance were used herein as models in the comprehensive research to dissect these mechanisms in that group of plants. The work was focused on: (i) analysis of cellular membranes’ integrity; (ii) analysis of plant photosynthetic capacity (chlorophyll fluorescence; gas exchange; gene expression, protein accumulation, and activity of selected enzymes of the Calvin cycle); (iii) analysis of plant antioxidant capacity (reactive oxygen species generation; gene expression, protein accumulation, and activity of selected enzymes); and (iv) analysis of Cor14b accumulation, under cold acclimation. The more freezing tolerant introgression form revealed a higher integrity of membranes, an ability to cold acclimate its photosynthetic apparatus and higher water use efficiency after three weeks of cold acclimation, as well as a higher capacity of the antioxidant system and a lower content of reactive oxygen species in low temperature.


2015 ◽  
pp. 1-84 ◽  
Author(s):  
Franz-Josef Schmitt ◽  
Vladimir D. Kreslavski ◽  
Sergey K. Zharmukhamedov ◽  
Thomas Friedrich ◽  
Gernot Renger ◽  
...  

2019 ◽  
Vol 222 (1) ◽  
pp. 349-365 ◽  
Author(s):  
Zhennan Qiu ◽  
Li Zhu ◽  
Lei He ◽  
Dongdong Chen ◽  
Dali Zeng ◽  
...  

2002 ◽  
Vol 21 (2) ◽  
pp. 63-64 ◽  
Author(s):  
S S Deshpande ◽  
K Irani

It is becoming increasingly evident that reactive oxygen species (ROS) act at different stages of carcinogenesis, and thus play multiple roles in oncogenesis. In addition to being mutagenic and initiating tumors, ROS or carcinogens that result in ROS generation may affect tumor promotion and progression through varied effects on growth promoting, growth inhibitory, or apoptotic signaling pathways.


2020 ◽  
Vol 21 (3) ◽  
pp. 728 ◽  
Author(s):  
Abdul Wakeel ◽  
Ming Xu ◽  
Yinbo Gan

Chromium (Cr) is one of the top seven toxic heavy metals, being ranked 21st among the abundantly found metals in the earth’s crust. A huge amount of Cr releases from various industries and Cr mines, which is accumulating in the agricultural land, is significantly reducing the crop development, growth, and yield. Chromium mediates phytotoxicity either by direct interaction with different plant parts and metabolic pathways or it generates internal stress by inducing the accumulation of reactive oxygen species (ROS). Thus, the role of Cr-induced ROS in the phytotoxicity is very important. In the current study, we reviewed the most recent publications regarding Cr-induced ROS, Cr-induced alteration in the enzymatic antioxidant system, Cr-induced lipid peroxidation and cell membrane damage, Cr-induced DNA damage and genotoxicity, Cr-induced ultrastructural changes in cell and subcellular level, and Cr-induced alterations in photosynthesis and photosynthetic apparatus. Taken together, we conclude that Cr-induced ROS and the suppression of the enzymatic antioxidant system actually mediate Cr-induced cytotoxic, genotoxic, ultrastructural, and photosynthetic changes in plants.


2020 ◽  
Vol 71 (9) ◽  
pp. 2650-2660 ◽  
Author(s):  
Thomas Roach ◽  
Chae Sun Na ◽  
Wolfgang Stöggl ◽  
Anja Krieger-Liszkay

Abstract Non-photochemical quenching (NPQ) helps dissipate surplus light energy, preventing formation of reactive oxygen species (ROS). In Chlamydomonas reinhardtii, the thylakoid membrane protein LHCSR3 is involved in pH-dependent (qE-type) NPQ, lacking in the npq4 mutant. Preventing PSII repair revealed that npq4 lost PSII activity faster than the wild type (WT) in elevated O2, while no difference between strains was observed in O2-depleted conditions. Low Fv/Fm values remained 1.5 h after moving cells out of high light, and this qH-type quenching was independent of LHCSR3 and not accompanied by losses of maximum PSII activity. Culturing cells in historic O2 atmospheres (30–35%) increased the qE of cells, due to increased LHCSR1 and PsbS levels, and LHCSR3 in the WT, showing that atmospheric O2 tensions regulate qE capacity. Colony growth of npq4 was severely restricted at elevated O2, and npq4 accumulated more reactive electrophile species (RES) than the WT, which could damage PSI. Levels of PsaA (PSI) were lower in npq4 grown at 35% O2, while PsbA (PSII) levels remained stable. We conclude that even at high O2 concentrations, the PSII repair cycle is sufficient to maintain net levels of PSII. However, LHCSR3 has an important function in protecting PSI against O2-mediated damage, such as via RES.


Sign in / Sign up

Export Citation Format

Share Document