Nanoporous Carbon/Nitrogen Materials and their Hybrids for Biomass Conversion

Author(s):  
Hui Su ◽  
Hong-Hui Wang ◽  
Tian-Jian Zhao ◽  
Xin-Hao Li
2006 ◽  
Author(s):  
Felicia Bucura ◽  
Violeta Niculescu ◽  
Elena David ◽  
Claudia Sisu ◽  
Marius Constantinescum
Keyword(s):  

2014 ◽  
Author(s):  
Hemant Pendse

2020 ◽  
Vol 16 ◽  
Author(s):  
Anping Wang ◽  
Heng Zhang ◽  
Hu Li ◽  
Song Yang

Background: With the gradual decrease of fossil energy, the development of alternatives to fossil energy has attracted more and more attention. Biodiesel is considered to be the most potent alternative to fossil energy, mainly due to its green, renewable and biodegradable advantages. The stable, efficient and reusable catalysts are undoubtedly the most critical in the preparation of biodiesel. Among them, nanoporous carbon-based acidic materials are very important biodiesel catalysts. Objective: The latest advances of acidic nanoporous carbon catalysts in biodiesel production was reviewed. Methods: Biodiesel is mainly synthesized by esterification and transesterification. Due to the important role of nanoporous carbon-based acidic materials in the catalytic preparation of biodiesel, we focused on the synthesis, physical and chemical properties, catalytic performance and reusability. Results: Acidic catalytic materials have a good catalytic performance for high acid value feedstocks. However, the preparation of biodiesel with acid catalyst requires relatively strict reaction conditions. The application of nanoporous acidic carbon-based materials, due to the support of carbon-based framework, makes the catalyst have good stability and unique pore structure, accelerates the reaction mass transfer speed and accelerates the reaction. Conclusion: Nanoporous carbon-based acidic catalysts have the advantages of suitable pore structure, high active sites, and high stability. In order to make these catalytic processes more efficient, environmentally friendly and low cost, it is an important research direction for the future biodiesel catalysts to develop new catalytic materials with high specific surface area, suitable pore size, high acid density, and excellent performance.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3138
Author(s):  
Kamila Gosz ◽  
Agnieszka Tercjak ◽  
Adam Olszewski ◽  
Józef Haponiuk ◽  
Łukasz Piszczyk

The utilization of forestry waste resources in the production of polyurethane resins is a promising green alternative to the use of unsustainable resources. Liquefaction of wood-based biomass gives polyols with properties depending on the reagents used. In this article, the liquefaction of forestry wastes, including sawdust, in solvents such as glycerol and polyethylene glycol was investigated. The liquefaction process was carried out at temperatures of 120, 150, and 170 °C. The resulting bio-polyols were analyzed for process efficiency, hydroxyl number, water content, viscosity, and structural features using the Fourier transform infrared spectroscopy (FTIR). The optimum liquefaction temperature was 150 °C and the time of 6 h. Comprehensive analysis of polyol properties shows high biomass conversion and hydroxyl number in the range of 238–815 mg KOH/g. This may indicate that bio-polyols may be used as a potential substitute for petrochemical polyols. During polyurethane synthesis, materials with more than 80 wt% of bio-polyol were obtained. The materials were obtained by a one-step method by hot-pressing for 15 min at 100 °C and a pressure of 5 MPa with an NCO:OH ratio of 1:1 and 1.2:1. Dynamical-mechanical analysis (DMA) showed a high modulus of elasticity in the range of 62–839 MPa which depends on the reaction conditions.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Lukas Rieder ◽  
Katharina Ebner ◽  
Anton Glieder ◽  
Morten Sørlie

Abstract Background Lytic polysaccharide monooxygenases (LPMOs) are attracting large attention due their ability to degrade recalcitrant polysaccharides in biomass conversion and to perform powerful redox chemistry. Results We have established a universal Pichia pastoris platform for the expression of fungal LPMOs using state-of-the-art recombination cloning and modern molecular biological tools to achieve high yields from shake-flask cultivation and simple tag-less single-step purification. Yields are very favorable with up to 42 mg per liter medium for four different LPMOs spanning three different families. Moreover, we report for the first time of a yeast-originating signal peptide from the dolichyl-diphosphooligosaccharide-protein glycosyltransferase subunit 1 (OST1) form S. cerevisiae efficiently secreting and successfully processes the N-terminus of LPMOs yielding in fully functional enzymes. Conclusion The work demonstrates that the industrially most relevant expression host P. pastoris can be used to express fungal LPMOs from different families in high yields and inherent purity. The presented protocols are standardized and require little equipment with an additional advantage with short cultivation periods.


Author(s):  
Momir Milić ◽  
Biljana Petković ◽  
Abdellatif Selmi ◽  
Dalibor Petković ◽  
Kittisak Jermsittiparsert ◽  
...  

Author(s):  
Ahmed I. Osman ◽  
Neha Mehta ◽  
Ahmed M. Elgarahy ◽  
Amer Al-Hinai ◽  
Ala’a H. Al-Muhtaseb ◽  
...  

AbstractThe global energy demand is projected to rise by almost 28% by 2040 compared to current levels. Biomass is a promising energy source for producing either solid or liquid fuels. Biofuels are alternatives to fossil fuels to reduce anthropogenic greenhouse gas emissions. Nonetheless, policy decisions for biofuels should be based on evidence that biofuels are produced in a sustainable manner. To this end, life cycle assessment (LCA) provides information on environmental impacts associated with biofuel production chains. Here, we review advances in biomass conversion to biofuels and their environmental impact by life cycle assessment. Processes are gasification, combustion, pyrolysis, enzymatic hydrolysis routes and fermentation. Thermochemical processes are classified into low temperature, below 300 °C, and high temperature, higher than 300 °C, i.e. gasification, combustion and pyrolysis. Pyrolysis is promising because it operates at a relatively lower temperature of up to 500 °C, compared to gasification, which operates at 800–1300 °C. We focus on 1) the drawbacks and advantages of the thermochemical and biochemical conversion routes of biomass into various fuels and the possibility of integrating these routes for better process efficiency; 2) methodological approaches and key findings from 40 LCA studies on biomass to biofuel conversion pathways published from 2019 to 2021; and 3) bibliometric trends and knowledge gaps in biomass conversion into biofuels using thermochemical and biochemical routes. The integration of hydrothermal and biochemical routes is promising for the circular economy.


Sign in / Sign up

Export Citation Format

Share Document