Introduction to Distributed Acoustic Sensing (DAS) Applications for Characterization of Near‐Surface Processes

Author(s):  
Whitney Trainor‐Guitton ◽  
Thomas Coleman
2020 ◽  
Author(s):  
M. Alajmi ◽  
R. Pevzner ◽  
T. Alkhalifah ◽  
A.N. Qadrouh ◽  
M. Almalki ◽  
...  

2021 ◽  
Author(s):  
Nicola Piana Agostinetti ◽  
Alberto Villa ◽  
Gilberto Saccorotti

Abstract. We use PoroTOMO experimental data to compare the performance of Distributed Acoustic Sensing (DAS) and geophone data in executing standard exploration and monitoring activities. The PoroTOMO experiment consists of two "seismic systems": (a) a 8.6 km long optical fibre cable deployed across the Brady geothermal field and covering an area of 1.5 x 0.5 km with 100 m long segments, and (b) an array of 238 co-located geophones with an average spacing of 60 m. The PoroTOMO experiment recorded continuous seismic data between March 10th and March 25th 2016. During such period, a ML 4.3 regional event occurred in the southwest, about 150 km away from the geothermal field, together with several microseismic local events related to the geothermal activity. The seismic waves generated from such seismic events have been used as input data in this study. For the exploration tasks, we compare the propagation of the ML 4.3 event across the geothermal field in both seismic systems in term of relative time-delay, for a number of configurations and segments. Defined the propagation, we analyse and compare the amplitude and the signal-to-noise ratio (SNR) of the P-wave in the two systems at high resolution. For testing the potential in monitoring local seismicity, we first perform an analysis of the geophone data for locating a microseismic event, based on expert opinion. Then, we a adopt different workflow for the automatic location of the same microseismic event using DAS data. For testing the potential in monitoring distant event, data from the regional earthquake are used for retrieving both the propagation direction and apparent velocity of the wavefield, using a standard plane-wave-fitting approach. Our results indicate that: (1) at a local scale, the seismic P-waves propagation and their characteristics (i.e. SNR and amplitude) along a single cable segment are robustly consistent with recordings from co-located geophones (delay-times δt ∼ 0.3 over 400 m for both seismic systems) ; (2) the interpretation of seismic wave propagation across multiple separated segments is less clear, due to the heavy contamination of scattering sources and local velocity heterogeneities; nonetheless, results from the plane-wave fitting still indicate the possibility for a consistent detection and location of the event; (3) at high-resolution (10 m), large amplitude variations along the fibre cable seem to robustly correlate with near surface geology; (4) automatic monitoring of microseismicity can be performed with DAS recordings with results comparable to manual analysis of geophone recordings (i.e. maximum horizontal error on event location around 70 m for both geophones and DAS data) ; and (5) DAS data pre-conditioning (e.g., temporal sub-sampling and channel-stacking) and dedicated processing techniques are strictly necessary for making any real-time monitoring procedure feasible and trustable.


Geophysics ◽  
2021 ◽  
pp. 1-69
Author(s):  
Yarin Abukrat ◽  
Moshe Reshef

During the last decade, fiber-optic-based distributed acoustic sensing (DAS) has emerged as an affordable, easy-to-deploy, reliable, and non-invasive technique for high-resolution seismic sensing. We show that fiber deployments dedicated to near-surface seismic applications, commonly employed for the detection and localization of voids, can be used effectively with conventional processing techniques. We tested a variety of small-size sources in different geological environments. These sources, operated on and below the surface, were recorded by horizontal and vertical DAS arrays. Results and comparisons to data acquired by vertical-component geophones demonstrate that DAS may be sufficient for acquiring near-surface seismic data. Furthermore, we tried to address the issue of directional sensing by DAS arrays and use it to solve the problem of wave-mode separation. Records acquired by a unique acquisition setup suggest that one can use the nature of DAS systems as uniaxial strainmeters to record separated wave modes. Lastly, we applied two seismic methods on DAS data acquired at a test site: multi-channel analysis of surface waves (MASW) and shallow diffraction imaging. These methods allowed us to determine the feasibility of using DAS systems for imaging shallow subsurface voids. MASW was used to uncover anomalies in S-wave velocity, whereas shallow diffraction imaging was applied to identify the location of the void. Results obtained illustrate that by using these methods we are able to accurately detect the true location of the void.


2020 ◽  
Author(s):  
Camille Jestin ◽  
Clément Hibert ◽  
Gaëtan Calbris ◽  
Vincent Lanticq

<p>Distributed Acoustic Sensing (DAS) is an innovative technique which has been recently employed for near-surface geophysics purposes. It involves the use of fibre-optic cable as a sensor. The fibre is analysed by sending a laser pulse from an interrogator unit. The phase of the backscattered signal contains the information on the strain on the cable, enabling the detection of a passing acoustic wave with enough energy for the cable excitation. Allowing the interrogation of long profiles and the generation of a dense spatial sampling, uneasy to obtain with classic geophysical techniques, DAS instrumentation then proved its relevance for seismic applications but also for infrastructure monitoring.</p><p>During DAS acquisition, and more precisely when closely looking at infrastructures integrity, it is necessary to clearly identify the source of the acoustic vibrations at the structure neighbourhood. Indeed, in the context of pipeline monitoring for example, it appears important to be able to classify events which generate seismic signals recorded by DAS systems and which can be related to a potential threat for the structure. In order to launch an alarm if necessary, the source identification must be fast, accurate and robust. Moreover, because DAS acquisition can generate traces every few meters along fibres of tens of kilometres, the used machine-learning algorithm must demonstrate its ability to handle a big amount of data.</p><p>In this study, we analyse the efficiency of the Random Forests (RF) machine-learning algorithm applied to data acquired with DAS system for the discrimination of event sources. RF algorithm has been selected because of its ability to handle large numbers of attributes related to signal characteristics and to enable a good reliability for the discrimination of sources. This algorithm has already proved its efficiency for automated classification of seismic waveforms (e.g. earthquakes, volcanic tremors, rock falls, avalanches, etc.).</p><p>We focus our study on tests lead along a gas pipeline instrumented with fibre-optic cable. Different third-party works have been conducted: excavation, saw sections, drill, jackhammer, etc. We work on the discrimination of six classes of seismic source. After running a detection phase based on a threshold on signal energy, we obtain several hundred of exploitable seismic traces to inject to the RF algorithm. We demonstrate the efficiency of the application of machine learning on DAS data to discriminate seismic waveforms from the correct class, with an overall precision on our test set of 99%.</p>


Sign in / Sign up

Export Citation Format

Share Document