rock falls
Recently Published Documents


TOTAL DOCUMENTS

275
(FIVE YEARS 86)

H-INDEX

28
(FIVE YEARS 4)

Author(s):  
Jürgen Oberst ◽  
Kai Wickhusen ◽  
Klaus Gwinner ◽  
Ernst Hauber ◽  
Alexander Stark ◽  
...  

Abstract We propose the exploration of polar areas on Mars by a next-generation orbiter mission. In particular, we aim at studying the seasonal and regional variations in snow-deposits, which – in combination with measurements of temporal variations in rotation and gravity field – will improve models of the global planetary CO2 cycle. A monitoring of polar scarps for rock falls and avalanche events may provide insights into the dynamics of ice sheets. The mapping of the complex layering of polar deposits, believed to contain an important record of climate history, may help us understand the early climate collapse on the planet. Hence, we propose an innovative next-generation exploration mission in polar circular Low Mars Orbit, which will be of interest to scientists and challenging to engineers alike. Schemes will be developed to overcome atmosphere drag forces acting upon the spacecraft by an electric propulsion system. Based on the experience of missions of similar type in Earth orbit we believe that a two-year mission in circular orbit is possible at altitudes as low as 150 km. Such a mission opens new opportunities for novel remote sensing approaches, not requiring excessive telescope equipment or power. We anticipate precision altimetry, powerful radars, high-resolution imaging, and magnetic field mapping.


2021 ◽  
Author(s):  
◽  
Pablo Iribarren Anacona

<p>This study examines hazardous processes and events originating from glacier and permafrost areas in the extratropical Andes (Andes of Chile and Argentina) in order to document their frequency, magnitude, dynamics and their geomorphic and societal impacts. Ice-avalanches and rock-falls from permafrost areas, lahars from ice-capped volcanoes and glacial lake outburst floods (GLOFs) have occurred in the extratropical Andes causing ~200 human deaths in the Twentieth Century. However, data about these events is scarce and has not been studied systematically. Thus, a better knowledge of glacier and permafrost hazards in the extratropical Andes is required to better prepare for threats emerging from a rapidly evolving cryosphere.  I carried out a regional-scale review of hazardous processes and events originating in glacier and permafrost areas in the extratropical Andes. This review, developed by means of a bibliographic analysis and the interpretation of satellite images, shows that multi-phase mass movements involving glaciers and permafrost and lahars have caused damage to communities in the extratropical Andes. However, it is noted that GLOFs are one the most common and far reaching hazards and that GLOFs in this region include some of the most voluminous GLOFs in historical time on Earth. Furthermore, GLOF hazard is likely to increase in the future in response to glacier retreat and lake development. To gain insight into the dynamics of GLOFs I create a regional-scale inventory of glacier lakes and associated hazards in the Baker Basin, a 20500 km2 glaciated basin in the Chilean Patagonia. I also simulate and reconstruct moraine- and ice- dammed lake failures in the extratropical Andes using numerical and empirical models.  More than 100 GLOFs have occurred in the extratropical Andes since the Eighteenth Century and at least 16 moraine-dammed lakes have produced GLOFs. In the extratropical Andes most of the failed moraine-dammed lakes were in contact with retreating glaciers and had moderate (> 8°) to steep (>15°) outlet slopes. Ice-dammed lakes also produced GLOFs in the extratropical Andes, damaging communities and highlighting the need for a better understanding of the GLOF dynamics and hazards. Thus, I reconstruct and model GLOFs that occurred in maritime western Patagonia (Engaño Valley) and the high-arid Andes (Manflas Valley) to characterise the GLOF dynamics in these contrasting environments.  Hydraulic modelling and geomorphologic analysis shows that the Engaño River GLOF (46º S) behaved as a Newtonian flow and incorporated tree trunks, from the gently sloping and heavily-forested valley, which increased the GLOF damaging capacity. In contrast, the Manflas GLOF (28º S) descended from a steep valley behaving as a sediment-laden flow, which was capable of moving boulder-size rocks dozens of kilometres from the GLOF source. In both events lack of awareness of the GLOF hazard and a lack of territorial planning accentuated the GLOF damage. These GLOF reconstructions highlight both the difficulties in modelling sediment-laden flows over long distances, and the utility of empirical debris-flow models for regional-scale hazard analysis.  This thesis synthesises and increases our knowledge about the distribution, frequency, magnitude and dynamics of hazardous processes that have occurred in glacier and permafrost areas in the extratropical Andes. This knowledge forms a basis for future assessments of glacier and permafrost related hazards in the Chilean and Argentinean Andes and helps inform strategies and policies to face hazardous geomorphologic and hydrological processes emerging from a rapidly evolving cryosphere.</p>


2021 ◽  
Author(s):  
◽  
Pablo Iribarren Anacona

<p>This study examines hazardous processes and events originating from glacier and permafrost areas in the extratropical Andes (Andes of Chile and Argentina) in order to document their frequency, magnitude, dynamics and their geomorphic and societal impacts. Ice-avalanches and rock-falls from permafrost areas, lahars from ice-capped volcanoes and glacial lake outburst floods (GLOFs) have occurred in the extratropical Andes causing ~200 human deaths in the Twentieth Century. However, data about these events is scarce and has not been studied systematically. Thus, a better knowledge of glacier and permafrost hazards in the extratropical Andes is required to better prepare for threats emerging from a rapidly evolving cryosphere.  I carried out a regional-scale review of hazardous processes and events originating in glacier and permafrost areas in the extratropical Andes. This review, developed by means of a bibliographic analysis and the interpretation of satellite images, shows that multi-phase mass movements involving glaciers and permafrost and lahars have caused damage to communities in the extratropical Andes. However, it is noted that GLOFs are one the most common and far reaching hazards and that GLOFs in this region include some of the most voluminous GLOFs in historical time on Earth. Furthermore, GLOF hazard is likely to increase in the future in response to glacier retreat and lake development. To gain insight into the dynamics of GLOFs I create a regional-scale inventory of glacier lakes and associated hazards in the Baker Basin, a 20500 km2 glaciated basin in the Chilean Patagonia. I also simulate and reconstruct moraine- and ice- dammed lake failures in the extratropical Andes using numerical and empirical models.  More than 100 GLOFs have occurred in the extratropical Andes since the Eighteenth Century and at least 16 moraine-dammed lakes have produced GLOFs. In the extratropical Andes most of the failed moraine-dammed lakes were in contact with retreating glaciers and had moderate (> 8°) to steep (>15°) outlet slopes. Ice-dammed lakes also produced GLOFs in the extratropical Andes, damaging communities and highlighting the need for a better understanding of the GLOF dynamics and hazards. Thus, I reconstruct and model GLOFs that occurred in maritime western Patagonia (Engaño Valley) and the high-arid Andes (Manflas Valley) to characterise the GLOF dynamics in these contrasting environments.  Hydraulic modelling and geomorphologic analysis shows that the Engaño River GLOF (46º S) behaved as a Newtonian flow and incorporated tree trunks, from the gently sloping and heavily-forested valley, which increased the GLOF damaging capacity. In contrast, the Manflas GLOF (28º S) descended from a steep valley behaving as a sediment-laden flow, which was capable of moving boulder-size rocks dozens of kilometres from the GLOF source. In both events lack of awareness of the GLOF hazard and a lack of territorial planning accentuated the GLOF damage. These GLOF reconstructions highlight both the difficulties in modelling sediment-laden flows over long distances, and the utility of empirical debris-flow models for regional-scale hazard analysis.  This thesis synthesises and increases our knowledge about the distribution, frequency, magnitude and dynamics of hazardous processes that have occurred in glacier and permafrost areas in the extratropical Andes. This knowledge forms a basis for future assessments of glacier and permafrost related hazards in the Chilean and Argentinean Andes and helps inform strategies and policies to face hazardous geomorphologic and hydrological processes emerging from a rapidly evolving cryosphere.</p>


2021 ◽  
Vol 58 ◽  
pp. 222
Author(s):  
Alexandros Chatzipetros ◽  
Spyros Pavlides ◽  
Michael Foumelis ◽  
Sotiris Sboras ◽  
Dimitris Galanakis ◽  
...  

A sequence of earthquakes occurred on March 3rd and 4th in Northern Thessaly, northern Greece, associated with previously unknown, blind normal faults within the crystalline Palaeozoic basement of the Pelagonian geotectonic zone. Surficial ground deformation, such as liquefaction phenomena in fluvial plains, as well as soil fissures and rock falls, have been mapped. Geological indications of the unmapped seismic fault, i.e., reactivated shear zones, open cracks, etc., have been identified within the bedrock. Based on geological indications, the main fault projection to the surface could be considered a 15 km NW-SE trending structure and average dip of 45o to the NE. The seismic source of the main shock was modelled, and the Coulomb static stress changes calculated for receiver faults similar to the source. The determination of the active tectonic regime of the region by geodetic data and the well-known faults of NE Thessaly plain are also presented, as well as the revised historical and instrumental seismicity. This earthquake raises new concerns and challenges, revising some established views, such as the status of main stress orientations, the orientation of active tectonic structures, the occurrence of a seismogenic fault in a mountainous massif of crystalline rocks without typical geomorphological expression and the role of blind faults in Seismic Hazard Assessment.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lan Cui ◽  
Yi Liu ◽  
Qian Sheng ◽  
Ping Xiao

Geotechnical hazards such as debris flows, rock falls in slopes, rock collapse, and rockburst in underground mining or caverns are tightly correlated to the mechanical behavior of natural rock mass stability. Strength and failure mode of the natural rock mass are governed by the presented fissures. In this paper, samples containing T-shaped fissures with different geometry were prepared by rock-like materials and tested under varying uniaxial cyclic loading compression. The effect of T-shaped fissures with different geometry and the strain rate and loading frequency on the strength of tested samples were studied, and the failure mode of the samples containing T-shaped cross fissures under different working conditions was observed. The results show that the function of the minor fissures was not completely negative, and the strength of T-shaped fissure samples containing a major fissure with different inclination angles presented a varying trend with the increasing included angle between the major and minor fissures. Moreover, the strength of the cracked samples increased with the increase of the strain rate and loading frequency, and the larger the included angles between the major and minor fissures, the more sensitive the T-shaped fissure sample was to the change of frequency, but without a noticeable linear correlation relationship between the strength of the sample and the included angles between the major and minor fissures. In addition, the existence of the minor fissures had a significant impact on the failure mode of the sample, and the failure mode of the samples containing T-shaped cross fissures of the same geometry under the uniaxial compression and the uniaxial cyclic load was equivalent.


2021 ◽  
Author(s):  
Christoph Hintner ◽  
Stefano Terzi ◽  
Stefan Steger

This chapter describes the Wipptal South Pilot Action Region (PAR) in South Tyrol, where forests are well recognized to play a crucial role in protecting against a variety of gravity-driven natural hazards, such as landslides, debris flows, rock falls and snow avalanches. The chapter presents the three municipalities in the PAR area in terms of socio-environmental context, gravity-driven natural hazards and forest characteristics. The presented best-practice example describes the results of a former project entitled “Waldtypisierung Südtirol” (Eng. Forest Characterization South Tyrol) that focused on a detailed description of forests in South Tyrol and the development of a handbook for foresters. It is shown that the Wipptal South PAR as being is frequently affected by a variety of gravity-induced hazards while highlighting the critical role of forest in protecting people and their properties. Appropriate forest management strategies are vital to maintain and increase tree species diversity (e.g. populating fir) and the associated protective forest function. In this context, climate change effects, such as an increasing threat of bark beetle infestation due to rising drought stress or the consequences of associated extreme weather events (e.g. storms), pose major challenges for the local forests and their protective function.


2021 ◽  
Vol 13 (16) ◽  
pp. 3145
Author(s):  
Sarvesh Kumar Singh ◽  
Bikram Pratap Banerjee ◽  
Simit Raval

Spatially referenced and geometrically accurate laser scans are essential for mapping and monitoring applications in underground mines to ensure safe and smooth operation. However, obtaining an absolute 3D map in an underground mine environment is challenging using laser scanning due to the unavailability of global navigation satellite system (GNSS) signals. Consequently, applications that require georeferenced point cloud or coregistered multitemporal point clouds such as detecting changes, monitoring deformations, tracking mine logistics, measuring roadway convergence rate and evaluating construction performance become challenging. Current mapping practices largely include a manual selection of discernable reference points in laser scans for georeferencing and coregistration which is often time-consuming, arduous and error-prone. Moreover, challenges in obtaining a sensor positioning framework, the presence of structurally symmetric layouts and highly repetitive features (such as roof bolts) makes the multitemporal scans difficult to georeference and coregister. This study aims at overcoming these practical challenges through development of three-dimensional unique identifiers (3DUIDs) and a 3D registration (3DReG) workflow. Field testing of the developed approach in an underground coal mine has been found effective with an accuracy of 1.76 m in georeferencing and 0.16 m in coregistration for a scan length of 850 m. Additionally, automatic extraction of mine roadway profile has been demonstrated using 3DUID which is often a compliant and operational requirement for mitigating roadway related hazards that includes roadway convergence rate, roof/rock falls, floor heaves and vehicle clearance for collision avoidance. Potential applications of 3DUID include roadway profile extraction, guided automation, sensor calibration, reference targets for a routine survey and deformation monitoring.


Sign in / Sign up

Export Citation Format

Share Document