Fuzzy Rough Set Theory‐Based Feature Selection

Author(s):  
Tanmoy Som ◽  
Shivam Shreevastava ◽  
Anoop Kumar Tiwari ◽  
Shivani Singh
Entropy ◽  
2018 ◽  
Vol 20 (10) ◽  
pp. 788 ◽  
Author(s):  
Xiao Zhang ◽  
Xia Liu ◽  
Yanyan Yang

The information entropy developed by Shannon is an effective measure of uncertainty in data, and the rough set theory is a useful tool of computer applications to deal with vagueness and uncertainty data circumstances. At present, the information entropy has been extensively applied in the rough set theory, and different information entropy models have also been proposed in rough sets. In this paper, based on the existing feature selection method by using a fuzzy rough set-based information entropy, a corresponding fast algorithm is provided to achieve efficient implementation, in which the fuzzy rough set-based information entropy taking as the evaluation measure for selecting features is computed by an improved mechanism with lower complexity. The essence of the acceleration algorithm is to use iterative reduced instances to compute the lambda-conditional entropy. Numerical experiments are further conducted to show the performance of the proposed fast algorithm, and the results demonstrate that the algorithm acquires the same feature subset to its original counterpart, but with significantly less time.


Kybernetes ◽  
2016 ◽  
Vol 45 (3) ◽  
pp. 461-473 ◽  
Author(s):  
Sun Bingzhen ◽  
Ma Weimin

Purpose – The purpose of this paper is to present a new method for evaluation of emergency plans for unconventional emergency events by using the soft fuzzy rough set theory and methodology. Design/methodology/approach – In response to the problems of insufficient risk identification, incomplete and inaccurate data and different preference of decision makers, a new model for emergency plan evaluation is established by combining soft set theory with classical fuzzy rough set theory. Moreover, by combining the TOPSIS method with soft fuzzy rough set theory, the score value of the soft fuzzy lower and upper approximation is defined for the optimal object and the worst object. Finally, emergency plans are comprehensively evaluated according to the soft close degree of the soft fuzzy rough set theory. Findings – This paper presents a new perspective on emergency management decision making in unconventional emergency events. Also, the paper provides an effective model for evaluating emergency plans for unconventional events. Originality/value – The paper contributes to decision making in emergency management of unconventional emergency events. The model is useful for dealing with decision making with uncertain information.


2021 ◽  
pp. 107993
Author(s):  
Peng Zhou ◽  
Peipei Li ◽  
Shu Zhao ◽  
Yanping Zhang

2018 ◽  
Vol 7 (2) ◽  
pp. 75-84 ◽  
Author(s):  
Shivam Shreevastava ◽  
Anoop Kumar Tiwari ◽  
Tanmoy Som

Feature selection is one of the widely used pre-processing techniques to deal with large data sets. In this context, rough set theory has been successfully implemented for feature selection of discrete data set but in case of continuous data set it requires discretization, which may cause information loss. Fuzzy rough set theory approaches have also been used successfully to resolve this issue as it can handle continuous data directly. Moreover, almost all feature selection techniques are used to handle homogeneous data set. In this article, the center of attraction is on heterogeneous feature subset reduction. A novel intuitionistic fuzzy neighborhood models have been proposed by combining intuitionistic fuzzy sets and neighborhood rough set models by taking an appropriate pair of lower and upper approximations and generalize it for feature selection, supported with theory and its validation. An appropriate algorithm along with application to a data set has been added.


Sign in / Sign up

Export Citation Format

Share Document