Dynamic Deformation of Icosahedral Boron‐Based Ceramics

Keyword(s):  
2013 ◽  
Vol 20 (4) ◽  
pp. 555-564 ◽  
Author(s):  
Wojciech Moćko

Abstract The paper presents the results of the analysis of the striker shape impact on the shape of the mechanical elastic wave generated in the Hopkinson bar. The influence of the tensometer amplifier bandwidth on the stress-strain characteristics obtained in this method was analyzed too. For the purposes of analyzing under the computing environment ABAQUS / Explicit the test bench model was created, and then the analysis of the process of dynamic deformation of the specimen with specific mechanical parameters was carried out. Based on those tests, it was found that the geometry of the end of the striker has an effect on the form of the loading wave and the spectral width of the signal of that wave. Reduction of the striker end diameter reduces unwanted oscillations, however, adversely affects the time of strain rate stabilization. It was determined for the assumed test bench configuration that a tensometric measurement system with a bandwidth equal to 50 kHz is sufficient


2007 ◽  
Vol 345-346 ◽  
pp. 1469-1472
Author(s):  
Gab Chul Jang ◽  
Kyong Ho Chang ◽  
Chin Hyung Lee

During manufacturing the welded joint of steel structures, residual stress is produced and weld metal is used inevitably. And residual stress and weld metal influence on the static and dynamic mechanical behavior of steel structures. Therefore, to predict the mechanical behavior of steel pile with a welded joint during static and dynamic deformation, the research on the influence of the welded joints on the static and dynamic behavior of steel pile is clarified. In this paper, the residual stress distribution in a welded joint of steel piles was investigated by using three-dimensional welding analysis. The static and dynamic mechanical behavior of steel piles with a welded joint is investigated by three-dimensional elastic-plastic finite element analysis using a proposed dynamic hysteresis model. Numerical analyses of the steel pile with a welded joint were compared to that without a welded joint with respect to load carrying capacity and residual stress distribution. The influence of the welded joint on the mechanical behavior of steel piles during static and dynamic deformation was clarified by comparing analytical results


Soft Matter ◽  
2021 ◽  
Author(s):  
Tao Lin ◽  
Zhen Wang ◽  
Wen Wang ◽  
Yi Sui

We have developed a high-throughput method, by combining a hybrid neural network with a mechanistic capsule model, to predict membrane elasticity and viscosity of microcapsules from their dynamic deformation in a branched microchannel.


2012 ◽  
Vol 496 ◽  
pp. 281-284
Author(s):  
Wen Wen Liu ◽  
Zhi Wang ◽  
Yun Hai Du ◽  
Xian Zhong Xu ◽  
Da Quan Liu ◽  
...  

An improved accurate speckle projection method is used for study the mechanical properties of the composite material film in the paper. A system for deformation measurement is developed with the telecentric lenses, in which such conventional lens’ disadvantages such as lens distortion and perspective error will be diminished. Experiments are performed to validate the availability and reliability of the calibration method. The system can also be used to measure the dynamic deformation and then results are also given.


1991 ◽  
Vol 21 (4) ◽  
pp. 457-460
Author(s):  
L V Koval'chuk ◽  
R A Liukonen ◽  
A Yu Rodionov ◽  
A M Trofimenko ◽  
S V Fedorov ◽  
...  

2011 ◽  
Vol 284-286 ◽  
pp. 1579-1583
Author(s):  
Ping Li Mao ◽  
Zheng Liu ◽  
Chang Yi Wang ◽  
Feng Wang

The dynamic deformation behavior of an as-extruded Mg-Gd-Y magnesium alloy was studied by using Split Hopkinson Pressure Bar (SHPB) apparatus under high strain rates of 102 s-1 to 103s-1 in the present work, in the mean while the microstructure evolution after deformation were inspected by OM and SEM. The results demonstrated that the material is not sensitive to the strain rate and with increasing the strain rate the yield stress of as-extruded Mg-Gd-Y magnesium alloy has a tendency of increasing. The microstructure observation results shown that several deformation localization areas with the width of 10mm formed in the strain rates of 465s-1 and 2140s-1 along the compression axis respectively, and the grain boundaries within the deformation localization area are parallel with each other and are perpendicular to the compression axis. While increasing the strain rate to 3767s-1 the deformation seems become uniform and all the grains are compressed flat in somewhat. The deformation mechanism of as-extruded Mg-Gd-Y magnesium alloy under high strain rate at room temperature was also discussed.


Sign in / Sign up

Export Citation Format

Share Document