Iterative Search Algorithms

2021 ◽  
pp. 99-119
2021 ◽  
Vol 11 (11) ◽  
pp. 4774
Author(s):  
Illya Bakurov ◽  
Marco Buzzelli ◽  
Mauro Castelli ◽  
Leonardo Vanneschi ◽  
Raimondo Schettini

Several interesting libraries for optimization have been proposed. Some focus on individual optimization algorithms, or limited sets of them, and others focus on limited sets of problems. Frequently, the implementation of one of them does not precisely follow the formal definition, and they are difficult to personalize and compare. This makes it difficult to perform comparative studies and propose novel approaches. In this paper, we propose to solve these issues with the General Purpose Optimization Library (GPOL): a flexible and efficient multipurpose optimization library that covers a wide range of stochastic iterative search algorithms, through which flexible and modular implementation can allow for solving many different problem types from the fields of continuous and combinatorial optimization and supervised machine learning problem solving. Moreover, the library supports full-batch and mini-batch learning and allows carrying out computations on a CPU or GPU. The package is distributed under an MIT license. Source code, installation instructions, demos and tutorials are publicly available in our code hosting platform (the reference is provided in the Introduction).


Author(s):  
Maria A. Milkova

Nowadays the process of information accumulation is so rapid that the concept of the usual iterative search requires revision. Being in the world of oversaturated information in order to comprehensively cover and analyze the problem under study, it is necessary to make high demands on the search methods. An innovative approach to search should flexibly take into account the large amount of already accumulated knowledge and a priori requirements for results. The results, in turn, should immediately provide a roadmap of the direction being studied with the possibility of as much detail as possible. The approach to search based on topic modeling, the so-called topic search, allows you to take into account all these requirements and thereby streamline the nature of working with information, increase the efficiency of knowledge production, avoid cognitive biases in the perception of information, which is important both on micro and macro level. In order to demonstrate an example of applying topic search, the article considers the task of analyzing an import substitution program based on patent data. The program includes plans for 22 industries and contains more than 1,500 products and technologies for the proposed import substitution. The use of patent search based on topic modeling allows to search immediately by the blocks of a priori information – terms of industrial plans for import substitution and at the output get a selection of relevant documents for each of the industries. This approach allows not only to provide a comprehensive picture of the effectiveness of the program as a whole, but also to visually obtain more detailed information about which groups of products and technologies have been patented.


2010 ◽  
Vol 33 (7) ◽  
pp. 1127-1139
Author(s):  
Da-Ming ZHU ◽  
Shao-Han MA ◽  
Ping-Ping ZHANG

Author(s):  
S. V. Skvortsov ◽  
◽  
T. A. Fetisova ◽  
D. V. Fetisov ◽  
◽  
...  

Engevista ◽  
2014 ◽  
Vol 17 (2) ◽  
pp. 152
Author(s):  
Radael De Souza Parolin ◽  
Pedro Paulo Gomes Watts Rodrigues ◽  
Antônio J. Silva Neto

The quality of a given water body can be assessed through the analysis of a number of indicators. Mathematical and computational models can be built to simulate the behavior of these indicators (observable variables), in such a way that different scenarios can be generated, supporting decisions regarding water resources management. In this study, the transport of a conservative contaminant in an estuarine environment is simulated in order to identify the position and intensity of the contaminant source. For this, it was formulated an inverse problem, which was solved through computational intelligence methods. This approach required adaptations to these methods, which had to be modified to relate the source position to the discrete mesh points of the domain. In this context, two adaptive techniques were developed. In one, the estimated points are projected to the grid points, and in the other, points are randomly selected in the iterative search spaces of the methods. The results showed that the methodology here developed has a strong potential in water bodies’ management and simulation.


2020 ◽  
Vol 37 (2) ◽  
pp. 1-8
Author(s):  
David Schmidtz

Abstract This essay introduces basic issues that make up the topic of freedom of thought, including newly emerging issues raised by the current proliferation of Internet search algorithms.


2021 ◽  
Vol 103 (6) ◽  
Author(s):  
G. A. Bezerra ◽  
P. H. G. Lugão ◽  
R. Portugal

Sign in / Sign up

Export Citation Format

Share Document