Navigation Error Analysis in the ZUPT‐Aided Pedestrian Inertial Navigation

Author(s):  
Vahid Ghasemzadeh ◽  
Mohammad M Arefi

The inertial navigation system is one of the most important and common methods of navigation. In this system, accelerometers and gyroscopes are used to measure linear accelerations and angular velocities, respectively. Accelerometers have simpler manufacture techniques, lower cost, and smaller volume and weight in comparison with gyroscopes. Therefore, in some application of navigation systems, non-gyro inertial navigation systems based on accelerometers are used. In this paper, an asymmetric structure of six accelerometers is proposed. Then dynamic relations of this structure are extracted. This structure and its relations can determine linear accelerations and angular velocities, completely. Moreover, the algorithm of inertial navigation in earth centered earth fixed (ECEF) frame is suggested. Error analysis as of the most important issues in inertial navigation is discussed. Thus, bias, misalignment, sensitivity, and noise of accelerometers are modeled appropriately. In addition, a symmetric structure of accelerometers is proposed and its equations are derived. Finally, the designed system, error model of accelerometers, and algorithm of inertial navigation in ECEF frame are simulated. The results of simulation show that the designed system has suitable accuracy and applications for short time navigation. Furthermore, results confirm that the proposed asymmetric structure requires less accelerometer in comparison with symmetric structure.


2018 ◽  
Vol 160 ◽  
pp. 07004
Author(s):  
Junbo TIE ◽  
Meiping WU ◽  
Juliang Cao ◽  
Junxiang Lian ◽  
Shaokun Cai ◽  
...  

In recent years, the significant improvement of inertial navigation, leaves the gravity disturbance as the important factor which affects the accuracy of inertial navigation. This paper focus on the compensation for gravity disturbance with gravity spherical harmonic model, especially the optimal degree of gravity spherical harmonic model with which to calculate the gravity disturbance. The effect of gravity disturbance on inertial navigation is analysed based on the amplitude-frequency response characteristics of inertial navigation error differential equation, then the dominantly influential frequency band of gravity disturbance can be found which is the target of compensation. Combination the dominantly influential frequency band with the spatial resolution of the Earth’s gravity spherical harmonic model EGM2008 which is used to calculate the gravity disturbance, the optimal degree can be determined based on an algorithm proposed in this paper. Finally, shipborne inertial navigation experiment confirms the correctness and effectiveness of the proposed algorithm.


2005 ◽  
Vol 58 (3) ◽  
pp. 479-492 ◽  
Author(s):  
Jay Hyoun Kwon ◽  
Christopher Jekeli

Precision inertial navigation depends not only on the quality of the inertial sensors (accelerometers and gyros), but also on the accuracy of the gravity compensation. With a view toward the next-generation inertial navigation systems, based on sensors whose errors contribute as little as a few metres per hour to the navigation error budget, we have analyzed the required quality of gravity compensation to the navigation solution. The investigation considered a standard compensation method using ground data to predict the gravity vector at altitude for aircraft free-inertial navigation. The navigation effects of the compensation errors were examined using gravity data in two gravimetrically distinct areas and a navigation simulator with parameters such as data noise and resolution, supplemental global gravity model noise, and on-track interpolation method. For a typical flight trajectory at 5 km altitude and 300 km/hr aircraft speed, the error in gravity compensation contributes less than 5 m to the position error after one hour of free-inertial navigation if the ground data are gridded with 2 arcmin resolution and are accurate to better than 5 mGal.


Sign in / Sign up

Export Citation Format

Share Document