Machine Learning–Based Security in Cloud Database—A Survey

2021 ◽  
pp. 239-269
Author(s):  
Utsav Vora ◽  
Jayleena Mahato ◽  
Hrishav Dasgupta ◽  
Anand Kumar ◽  
Swarup Kr Ghosh
2017 ◽  
Author(s):  
Vinicius Da S. Segalin ◽  
Carina F. Dorneles ◽  
Mario A. R. Dantas

AA well-known challenge with long running time queries in database environments is how much time a query will take to execute. This prediction is relevant for several reasons. For instance, by knowing that a query will take longer to execute than desired, one resource reservation mechanism can be performed, which means reserving more resources in order to execute this query in a shorter time in a future request. In this research work, it is presented a proposal in which the use of an advance reservation mechanism in a cloud database environment, considering machine learning techniques, provides resource recommendation. The proposed model is presented, in addition to some experiments that evaluate benefits and the efficiency of this enhanced proposal.


Author(s):  
Wenhua Xiao ◽  
Cheng Yang ◽  
Ji Wang ◽  
Xiaomin Zhu ◽  
Weidong Bao ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
pp. 21-40
Author(s):  
Chenxiao Wang ◽  
Zach Arani ◽  
Le Gruenwald ◽  
Laurent d'Orazio ◽  
Eleazar Leal

In cloud environments, hardware configurations, data usage, and workload allocations are continuously changing. These changes make it difficult for the query optimizer of a cloud database management system (DBMS) to select an optimal query execution plan (QEP). In order to optimize a query with a more accurate cost estimation, performing query re-optimizations during the query execution has been proposed in the literature. However, some of there-optimizations may not provide any performance gain in terms of query response time or monetary costs, which are the two optimization objectives for cloud databases, and may also have negative impacts on the performance due to their overheads. This raises the question of how to determine when are-optimization is beneficial. In this paper, we present a technique called ReOptML that uses machine learning to enable effective re-optimizations. This technique executes a query in stages, employs a machine learning model to predict whether a query re-optimization is beneficial after a stage is executed, and invokes the query optimizer to perform the re-optimization automatically. The experiments comparing ReOptML with existing query re-optimization algorithms show that ReOptML improves query response time from 13% to 35% for skew data and from 13% to 21% for uniform data, and improves monetary cost paid to cloud service providers from 17% to 35% on skewdata.


2020 ◽  
Vol 43 ◽  
Author(s):  
Myrthe Faber

Abstract Gilead et al. state that abstraction supports mental travel, and that mental travel critically relies on abstraction. I propose an important addition to this theoretical framework, namely that mental travel might also support abstraction. Specifically, I argue that spontaneous mental travel (mind wandering), much like data augmentation in machine learning, provides variability in mental content and context necessary for abstraction.


2020 ◽  
Author(s):  
Mohammed J. Zaki ◽  
Wagner Meira, Jr
Keyword(s):  

2020 ◽  
Author(s):  
Marc Peter Deisenroth ◽  
A. Aldo Faisal ◽  
Cheng Soon Ong
Keyword(s):  

Author(s):  
Lorenza Saitta ◽  
Attilio Giordana ◽  
Antoine Cornuejols

Author(s):  
Shai Shalev-Shwartz ◽  
Shai Ben-David
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document