scholarly journals An Advance Resource Reservation Approach in a Cloud Database Environment

2017 ◽  
Author(s):  
Vinicius Da S. Segalin ◽  
Carina F. Dorneles ◽  
Mario A. R. Dantas

AA well-known challenge with long running time queries in database environments is how much time a query will take to execute. This prediction is relevant for several reasons. For instance, by knowing that a query will take longer to execute than desired, one resource reservation mechanism can be performed, which means reserving more resources in order to execute this query in a shorter time in a future request. In this research work, it is presented a proposal in which the use of an advance reservation mechanism in a cloud database environment, considering machine learning techniques, provides resource recommendation. The proposed model is presented, in addition to some experiments that evaluate benefits and the efficiency of this enhanced proposal.

The Intrusion is a major threat to unauthorized data or legal network using the legitimate user identity or any of the back doors and vulnerabilities in the network. IDS mechanisms are developed to detect the intrusions at various levels. The objective of the research work is to improve the Intrusion Detection System performance by applying machine learning techniques based on decision trees for detection and classification of attacks. The methodology adapted will process the datasets in three stages. The experimentation is conducted on KDDCUP99 data sets based on number of features. The Bayesian three modes are analyzed for different sized data sets based upon total number of attacks. The time consumed by the classifier to build the model is analyzed and the accuracy is done.


2019 ◽  
Vol 21 (3) ◽  
pp. 80-92
Author(s):  
Madhuri Gupta ◽  
Bharat Gupta

Cancer is a disease in which cells in body grow and divide beyond the control. Breast cancer is the second most common disease after lung cancer in women. Incredible advances in health sciences and biotechnology have prompted a huge amount of gene expression and clinical data. Machine learning techniques are improving the prior detection of breast cancer from this data. The research work carried out focuses on the application of machine learning methods, data analytic techniques, tools, and frameworks in the field of breast cancer research with respect to cancer survivability, cancer recurrence, cancer prediction and detection. Some of the widely used machine learning techniques used for detection of breast cancer are support vector machine and artificial neural network. Apache Spark data processing engine is found to be compatible with most of the machine learning frameworks.


2020 ◽  
Vol 8 (5) ◽  
pp. 4624-4627

In recent years, a lot of data has been generated about students, which can be utilized for deciding the career path of the student. This paper discusses some of the machine learning techniques which can be used to predict the performance of a student and help to decide his/her career path. Some of the key Machine Learning (ML) algorithms applied in our research work are Linear Regression, Logistics Regression, Support Vector machine, Naïve Bayes Classifier and K- means Clustering. The aim of this paper is to predict the student career path using Machine Learning algorithms. We compare the efficiencies of different ML classification algorithms on a real dataset obtained from University students.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Abhijit Dnyaneshwar Jadhav ◽  
Vidyullatha Pellakuri

AbstractNetwork security and data security are the biggest concerns now a days. Every organization decides their future business process based on the past and day to day transactional data. This data may consist of consumer’s confidential data, which needs to be kept secure. Also, the network connections when established with the external communication devices or entities, a care should be taken to authenticate these and block the unwanted access. This consists of identification of the malicious connection nodes and identification of normal connection nodes. For that, we use a continuous monitoring of the network input traffic to recognize the malicious connection request called as intrusion and this type of monitoring system is called as an Intrusion detection system (IDS). IDS helps us to protect our network and data from insecure and malicious network connections. Many such systems exists in the real time scenario, but they have critical issues of performance like accuracy and efficiency. These issues are addressed as a part of this research work of IDS using machine learning techniques and HDFS. The TP-IDS is designed in two phases for increasing accuracy. In phase I of TP-IDS, Support Vector Machine (SVM) and k Nearest Neighbor (kNN) are used. In phase II of TP-IDS, Decision Tree (DT) and Naïve Bayes (NB) are used, where phase II is the validation phase of the system for increasing accuracy. Also, both the phases are having Hadoop distributed file system underlying data storage and processing architecture, which allows parallel processing to increase the speed of the system and hence achieve the efficiency in TP-IDS.


2021 ◽  
Vol 27 (2) ◽  
Author(s):  
K.A. Oladapo ◽  
F.Y. Ayankoya ◽  
F.A. Adekunle ◽  
S.A. Idowu

The periodical occurrence of emergency situations represents an important issue for mankind. Over the years, the world at large has experienced multiple misadventures both natural and man-made. A recent report showed that flood have affected more individuals than any other category of disaster in the 21st century with the highest percentage of 43% of all disaster events in 2019 and Africa been the second vulnerable continent after Asia. Handling flood risk with the intention of safety and comfort of the citizens as well as saving their environment is one of the major responsibilities of the leadership in each country especially in flood prone areas. Machine learning predictive analytic applications can improve the risk management. So, it is highly important to devise a scientific method for flood risk reduction since it cannot be eradicated. The paper proposes a pluvial flood detection and prediction system based on machine learning techniques. The proposed model will employ a fuzzy rule-based classification to appraise the performance of the machine learning algorithm on pluvial flood conditioning variables.


2021 ◽  
Vol 10 (2) ◽  
pp. 35
Author(s):  
M. Encarnación Beato Gutiérrez ◽  
Montserrat Mateos Sánchez ◽  
Roberto Berjón Gallinas ◽  
Ana M. Fermoso García

At present, capacity control in indoor spaces is critical in the current situation in which we are living in, due to the pandemic. In this work, we propose a new solution using machine learning techniques with BLE technology. This study presents a real experiment in a university environment and we study three different prediction models using machine learning techniques—specifically, logistic regression, decision trees and artificial neural networks. As a conclusion, the study shows that machine learning techniques, in particular decision trees, together with BLE technology, provide a solution to the problem. The contribution of this research work shows that the prediction model obtained is capable of detecting when the COVID capacity of an enclosed space is exceeded. In addition, it ensures that no false negatives are produced, i.e., all the people inside the laboratory will be correctly counted.


2019 ◽  
Vol 20 (1) ◽  
pp. 28-45
Author(s):  
Umair Ahmed ◽  
Rafia Mumtaz ◽  
Hirra Anwar ◽  
Sadaf Mumtaz ◽  
Ali Mustafa Qamar

Abstract The rapid urbanization and industrial development have resulted in water contamination and water quality deterioration at an alarming rate, deeming its quick, inexpensive and accurate detection imperative. Conventional methods to measure water quality are lengthy, expensive and inefficient, including the manual analysis process carried out in a laboratory. The research work in this paper focuses on the problem from various perspectives, including the traditional methods of determining water quality to gain insight into the problem and the analysis of state-of-the-art technologies, including Internet of Things (IoT) and machine learning techniques to address water quality. After analyzing the currently available solutions, this paper proposes an IoT-based low-cost system employing machine learning techniques to monitor water quality in real time, analyze water quality trends and detect anomalous events such as intentional contamination of water.


MENDEL ◽  
2019 ◽  
Vol 25 (2) ◽  
pp. 1-10 ◽  
Author(s):  
Ivan Zelinka ◽  
Eslam Amer

Current commercial antivirus detection engines still rely on signature-based methods. However, with the huge increase in the number of new malware, current detection methods become not suitable. In this paper, we introduce a malware detection model based on ensemble learning. The model is trained using the minimum number of signification features that are extracted from the file header. Evaluations show that the ensemble models slightly outperform individual classification models. Experimental evaluations show that our model can predict unseen malware with an accuracy rate of 0.998 and with a false positive rate of 0.002. The paper also includes a comparison between the performance of the proposed model and with different machine learning techniques. We are emphasizing the use of machine learning based approaches to replace conventional signature-based methods.


Author(s):  
Alaeddine Boukhalfa ◽  
Nabil Hmina ◽  
Habiba Chaoni

Currently, information technology is used in all the life domains, multiple devices produce data and transfer them across the network, these transfers are not always secured, they can contain new menaces invisible by the current security devices. Moreover, the large amount and variety of the exchanged data cause difficulties related to the detection time. To solve these issues, we suggest in this paper, a new approach based on storing the large amount and variety of network traffic data employing Big Data techniques, and analyzing these data with Machine Learning algorithms, in a distributed and parallel way, in order to detect new hidden intrusions with less processing time. According to the results of the experiments, the detection accuracy of the Machine Learning methods reaches 99.9 %, and their processing time has been reduced considerably by applying them in a parallel and distributed way, which proves that our proposed model is effective for the detection of new intrusions.


Change detection is used to find whether the changes happened or not between two different time periods using remote sensing images. We can use various machine learning techniques and deep learning techniques for the change detection analysis using remote sensing images. This paper mainly focused on computational and performance analysis of both techniques in the application of change detection .For each approach, we considered ten different kinds of algorithms and evaluated the performance. Moreover, in this research work, we have analyzed merits and demerits of each method which have used to change detection.


Sign in / Sign up

Export Citation Format

Share Document