Dynamics of the Group Entropy Maximization Processes and of the Relative Entropy Group Minimization Processes Based on theSpeed‐gradient Principle

Author(s):  
Vasile Preda ◽  
Irina Băncescu
1993 ◽  
Vol 48 (1-2) ◽  
pp. 68-74 ◽  
Author(s):  
Douglas M. Collins

Abstract Incomplete and imperfect data characterize the problem of constructing electron density representations from experimental information. One fundamental concern is identification of the proper protocol for including new information at any stage of a density reconstruction. An axiomatic approach developed in other fields specifies entropy maximization as the desired protocol. In particular, if new data are used to modify a prior charge density distribution without adding extraneous prejudice, the new distribution must both agree with all the data, new and old, and be a function of maximum relative entropy. The functional form of relative entropy is s = - r In (r/t), where r and t respectively refer to new and prior distributions normalized to a common scale.Entropy maximization has been used to deal with certain aspects of the phase problem of X-ray diffraction. Varying degrees of success have marked the work which may be roughly assigned to categories as direct methods, data reduction and analysis, and image enhancement. Much of the work has been expressed in probabilistic language, although image enhancement has been somewhat more physical or geometric in description. Whatever the language, entropy maximization is a specific and deterministic functional manipulation. A recent advance has been the description of an algorithm which, quite deterministically, adjusts a prior positive charge density distribution to agree exactly with a specified subset of structure-factor moduli by a constrained entropy maximization.Entropy on an N-representable one-particle density matrix is well defined. The entropy is the expected form, and it is a simple function of the one-matrix eigenvalues which all must be non-negative. Relationships between the entropy functional and certain properties of a one-matrix are discussed, as well as a conjecture concerning the physical interpretation of entropy. Throughout this work reference is made to informational entropy, not the entropy of thermodynamics.


Author(s):  
Satvir Singh

Steganography is the special art of hidding important and confidential information in appropriate multimedia carrier. It also restrict the detection of  hidden messages. In this paper we proposes steganographic method based on dct and entropy thresholding technique. The steganographic algorithm uses random function in order to select block of the image where the elements of the binary sequence of a secret message will be inserted. Insertion takes place at the lower frequency  AC coefficients of the  block. Before we insert the secret  message. Image under goes dc transformations after insertion of the secret message we apply inverse dc transformations. Secret message will only be inserted into a particular block if  entropy value of that particular block is greater then threshold value of the entropy and if block is selected by the random function. In  Experimental work we calculated the peak signal to noise ratio(PSNR), Absolute difference , Relative entropy. Proposed algorithm give high value of PSNR  and low value of Absolute difference which clearly indicate level of distortion in image due to insertion of secret message is reduced. Also value of  relative entropy is close to zero which clearly indicate proposed algorithm is sufficiently secure. 


1981 ◽  
Vol 46 (2) ◽  
pp. 452-456
Author(s):  
Milan Šolc

The successive time derivatives of relative entropy and entropy production for a system with a reversible first-order reaction alternate in sign. It is proved that the relative entropy for reactions with an equilibrium constant smaller than or equal to one is completely monotonic in the whole definition interval, and for reactions with an equilibrium constant larger than one this function is completely monotonic at the beginning of the reaction and near to equilibrium.


2021 ◽  
Vol 40 (1) ◽  
pp. 235-250
Author(s):  
Liuxin Chen ◽  
Nanfang Luo ◽  
Xiaoling Gou

In the real multi-criteria group decision making (MCGDM) problems, there will be an interactive relationship among different decision makers (DMs). To identify the overall influence, we define the Shapley value as the DM’s weight. Entropy is a measure which makes it better than similarity measures to recognize a group decision making problem. Since we propose a relative entropy to measure the difference between two systems, which improves the accuracy of the distance measure.In this paper, a MCGDM approach named as TODIM is presented under q-rung orthopair fuzzy information.The proposed TODIM approach is developed for correlative MCGDM problems, in which the weights of the DMs are calculated in terms of Shapley values and the dominance matrices are evaluated based on relative entropy measure with q-rung orthopair fuzzy information.Furthermore, the efficacy of the proposed Gq-ROFWA operator and the novel TODIM is demonstrated through a selection problem of modern enterprises risk investment. A comparative analysis with existing methods is presented to validate the efficiency of the approach.


2021 ◽  
Vol 64 (8) ◽  
Author(s):  
Zhi-Xiang Jin ◽  
Long-Mei Yang ◽  
Shao-Ming Fei ◽  
Xianqing Li-Jost ◽  
Zhi-Xi Wang ◽  
...  

Author(s):  
Yong Bao ◽  
Rui Zhang ◽  
Godwin Enemali ◽  
Zhang Cao ◽  
Bin Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document