Model Based Human‐Robot Interaction Control

2021 ◽  
pp. 33-44
2020 ◽  
Vol 124 (1) ◽  
pp. 295-304 ◽  
Author(s):  
Raz Leib ◽  
Marta Russo ◽  
Andrea d’Avella ◽  
Ilana Nisky

While ballistic hand reaching movements are characterized by smooth position and velocity signals, the activity of the muscles exhibits bursts and silent periods. Here, we propose that a model based on bang-bang control provides the link between the abrupt changes in the muscle activity and the smooth reaching trajectory. Using bang-bang control instead of continuous control may simplify the design of prostheses and other physical human-robot interaction systems.


2019 ◽  
Vol 38 (6) ◽  
pp. 747-765 ◽  
Author(s):  
Federica Ferraguti ◽  
Chiara Talignani Landi ◽  
Lorenzo Sabattini ◽  
Marcello Bonfè ◽  
Cesare Fantuzzi ◽  
...  

Admittance control allows a desired dynamic behavior to be reproduced on a non-backdrivable manipulator and it has been widely used for interaction control and, in particular, for human–robot collaboration. Nevertheless, stability problems arise when the environment (e.g. the human) the robot is interacting with becomes too stiff. In this paper, we investigate the stability issues related to a change of stiffness of the human arm during the interaction with an admittance-controlled robot. We propose a novel method for detecting the rise of instability and a passivity-preserving strategy for restoring a stable behavior. The results of the paper are validated on two robotic setups and with 50 users performing two tasks that emulate industrial operations.


2015 ◽  
Vol 31 (5) ◽  
pp. 1089-1100 ◽  
Author(s):  
Haoyong Yu ◽  
Sunan Huang ◽  
Gong Chen ◽  
Yongping Pan ◽  
Zhao Guo

2011 ◽  
Vol 23 (5) ◽  
pp. 859-870 ◽  
Author(s):  
Henrik Hautop Lund ◽  
◽  
Luigi Pagliarini

Distributed robotics takes many forms, for instance, multirobots, modular robots, and self-reconfigurable robots. The understanding and development of such advanced robotic systems demand extensive knowledge in engineering and computer science. In this paper, we describe the concept of a distributed educational system as a valuable tool for introducing students to interactive parallel and distributed processing programming as the foundation for distributed robotics and human-robot interaction development. This is done by providing an educational tool that enables problem representation to be changed, related to multirobot control and human-robot interaction control from virtual to physical representation. The proposed system is valuable for bringing a vast number of issues into education – such as parallel programming, distribution, communication protocols, master dependency, connectivity, topology, island modeling software behavioral models, adaptive interactivity, feedback, and user interaction. We show how the proposed system can be considered a tool for easy, fast, flexible hands-on exploration of these distributed robotic issues. Through examples, we show how to implement interactive parallel and distributed processing in robotics with different software models such as openloop, randomness-based, rule-based, user-interactionbased, AI- and ALife-based, and morphology-based control.


Sign in / Sign up

Export Citation Format

Share Document