Origin of Life and Extraterrestrial Life

2021 ◽  
pp. 257-276
Author(s):  
James Lequeux
Author(s):  
David W. Deamer

This book describes a hypothetical process in which populations of protocells can spontaneously assemble and begin to grow and proliferate by energy- dependent polymerization. This might seem to be just an academic question pursued by a few dozen researchers as a matter of curiosity, but in the past three decades advances in engineering have reached a point where both NASA and the European Space Agency (ESA) routinely send spacecraft to other planetary objects in our solar system. A major question being pursued is whether life has emerged elsewhere than on Earth. The limited funds available to support such missions require decisions to be made about target priorities that are guided by judgment calls. These in turn depend on plausible scenarios related to the origin of life on habitable planetary surfaces. We know that other planetary bodies in our solar system have had or do have conditions that would permit microbial life to exist and perhaps even to begin. By a remarkable coincidence, the two most promising objects for extraterrestrial life happen to represent the two alternative scenarios described in this book: An origin of life in conditions of hydrothermal vents or an origin in hydrothermal fields. This final chapter will explore how these alternative views can guide our judgment about where to send future space missions designed as life-detection missions. Questions to be addressed: What is meant by habitability? Which planetary bodies are plausible sites for the origin of life? How do the hypotheses described in this book relate to those sites? There is healthy public interest in how life begins and whether it exists elsewhere in our solar system or on the myriad exoplanets now known to orbit other stars. This has fueled a series of films, television programs, and science fiction novels. Most of these feature extrapolations to intelligent life but a few, such as The Andromeda Strain, explore what might happen if a pathogenic organism from space began to spread to the human population. There is a serious and sustained scientific effort—SETI, or Search for Extraterrestrial Intelligence—devoted to finding an answer to this question.


Challenges ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 32
Author(s):  
Erik Persson ◽  
Jessica Abbott ◽  
Christian Balkenius ◽  
Anna Cabak Redei ◽  
Klara Anna Čápová ◽  
...  

The project “A Plurality of Lives” was funded and hosted by the Pufendorf Institute for Advanced Studies at Lund University, Sweden. The aim of the project was to better understand how a second origin of life, either in the form of a discovery of extraterrestrial life, life developed in a laboratory, or machines equipped with abilities previously only ascribed to living beings, will change how we understand and relate to life. Because of the inherently interdisciplinary nature of the project aim, the project took an interdisciplinary approach with a research group made up of 12 senior researchers representing 12 different disciplines. The project resulted in a joint volume, an international symposium, several new projects, and a network of researchers in the field, all continuing to communicate about and advance the aim of the project.


2005 ◽  
Vol 1 (T26A) ◽  
pp. 171-174
Author(s):  
Karen Meech ◽  
Alan Boss ◽  
Cristiano Cosmovici ◽  
Pascale Ehrenfreund ◽  
David Latham ◽  
...  

Historically, there have been two main groups dealing with the investigation of extraterrestrial life and habitable worlds. The first is IAU Commission 51, composed of astronomers, physicists and engineers who focus on the search for extrasolar planets, formation and evolution of planetary systems, and the astronomical search for intelligent signals. The second group, the International Society for the Study of the Origin of Life (ISSOL), is composed largely of biologists and chemists focusing research on the biogenesis and evolution of life on Earth and in the solar system. There are now a variety of international organizations dedicated to this field, and this triennium has seen the beginnings of coordination and interaction between the groups through the Federation of Astrobiology Organizations, FAO.


The part played by silicon compounds in terrestrial life can be discussed under three main headings. First is the important skeletal role which silica fulfils in organisms such as diatoms. Secondly is the reduction of silicate which can be performed by various micro-organisms and the question whether this can be regarded as a specific participation in metabolism. Thirdly is the toxic effect of silicon compounds in higher vertebrates, including man, which is responsible for the disease silicosis in miners and for induction of certain types of malignant tumours. From these observations it is clear that silicon compounds play an interesting, but relatively minor and incidental role, in terrestrial life. The question then arises whether this was a chance happening in the origin of life on our planet, or whether there are any properties of silicon which disqualify it from more direct participation in metabolism, so that it could not substitute for some other central element such as carbon in extraterrestrial life forms. Some general properties of silicon compounds that bear on this problem will be discussed.


2016 ◽  
Vol 16 (3) ◽  
pp. 293-295 ◽  
Author(s):  
David L. Morgan

AbstractStudents in an introductory undergraduate Astrobiology course were given a pre/post-test based on the Drake Equation in an attempt to measure changes in their perceptions regarding the prevalence of life in the Galaxy after taking the course. The results indicated that, after taking the course, the students were considerably more optimistic, by a 2 to 1 margin or more, about the prospect of habitable planets, the origin of life, and the evolution of intelligence in other planetary systems. The results suggest that, while it may not be the explicit goal of an astrobiology course to change student beliefs about the abundance or rarity of extraterrestrial life, such changes in opinion can and do occur.


1997 ◽  
Vol 161 ◽  
pp. 419-429 ◽  
Author(s):  
Antonio Lazcano

AbstractDifferent current ideas on the origin of life are critically examined. Comparison of the now fashionable FeS/H2S pyrite-based autotrophic theory of the origin of life with the heterotrophic viewpoint suggest that the later is still the most fertile explanation for the emergence of life. However, the theory of chemical evolution and heterotrophic origins of life requires major updating, which should include the abandonment of the idea that the appearance of life was a slow process involving billions of years. Stability of organic compounds and the genetics of bacteria suggest that the origin and early diversification of life took place in a time period of the order of 10 million years. Current evidence suggest that the abiotic synthesis of organic compounds may be a widespread phenomenon in the Galaxy and may have a deterministic nature. However, the history of the biosphere does not exhibits any obvious trend towards greater complexity or «higher» forms of life. Therefore, the role of contingency in biological evolution should not be understimated in the discussions of the possibilities of life in the Universe.


1997 ◽  
Vol 161 ◽  
pp. 23-47 ◽  
Author(s):  
Louis J. Allamandola ◽  
Max P. Bernstein ◽  
Scott A. Sandford

AbstractInfrared observations, combined with realistic laboratory simulations, have revolutionized our understanding of interstellar ice and dust, the building blocks of comets. Since comets are thought to be a major source of the volatiles on the primative earth, their organic inventory is of central importance to questions concerning the origin of life. Ices in molecular clouds contain the very simple molecules H2O, CH3OH, CO, CO2, CH4, H2, and probably some NH3and H2CO, as well as more complex species including nitriles, ketones, and esters. The evidence for these, as well as carbonrich materials such as polycyclic aromatic hydrocarbons (PAHs), microdiamonds, and amorphous carbon is briefly reviewed. This is followed by a detailed summary of interstellar/precometary ice photochemical evolution based on laboratory studies of realistic polar ice analogs. Ultraviolet photolysis of these ices produces H2, H2CO, CO2, CO, CH4, HCO, and the moderately complex organic molecules: CH3CH2OH (ethanol), HC(= O)NH2(formamide), CH3C(= O)NH2(acetamide), R-CN (nitriles), and hexamethylenetetramine (HMT, C6H12N4), as well as more complex species including polyoxymethylene and related species (POMs), amides, and ketones. The ready formation of these organic species from simple starting mixtures, the ice chemistry that ensues when these ices are mildly warmed, plus the observation that the more complex refractory photoproducts show lipid-like behavior and readily self organize into droplets upon exposure to liquid water suggest that comets may have played an important role in the origin of life.


2010 ◽  
Vol 15 (3) ◽  
pp. 220-228 ◽  
Author(s):  
Viren Swami ◽  
Tomas Chamorro-Premuzic ◽  
Manal Shafi

Previous work has shown that is important to consider the disjunction between paranormal and nonparanormal beliefs about extraterrestrial life. The current study examined the association between both such beliefs and individual difference and demographic variables. A total of 555 British participants completed the Extraterrestrial Beliefs Scale, as well as measures of their Big Five personality scores, social conformity, sensation seeking, and demographics. Results showed no sex differences in ratings of paranormal and nonparanormal extraterrestrial beliefs, but participants rated nonparanormal beliefs more positively than paranormal beliefs. Results of structural equation modeling showed that individual difference factors (specifically, Openness, Conscientiousness, and social conformity) explained 21% of the variance in extraterrestrial beliefs, whereas demographic factors (specifically, education level, political orientation, and religiosity) explained 16% of the variance. Limitations and directions for future work are considered.


Sign in / Sign up

Export Citation Format

Share Document