scholarly journals A Novel Synthetic, Xeno‐Free Biomimetic Surface for Serum‐Free Expansion of Human Mesenchymal Stromal Cells

2020 ◽  
Vol 4 (8) ◽  
pp. 2000008
Author(s):  
Kristina Thamm ◽  
Kristin Möbus ◽  
Russell Towers ◽  
Sandra Segeletz ◽  
Richard Wetzel ◽  
...  
Cytotherapy ◽  
2010 ◽  
Vol 12 (2) ◽  
pp. 143-153 ◽  
Author(s):  
Tino Felka ◽  
Richard Schäfer ◽  
Peter De Zwart ◽  
Wilhelm K. Aicher

2013 ◽  
Vol 46 (6) ◽  
pp. 608-627 ◽  
Author(s):  
S. Gottipamula ◽  
M. S. Muttigi ◽  
U. Kolkundkar ◽  
R. N. Seetharam

2021 ◽  
Author(s):  
Kristina Thamm ◽  
Kristin Moebus ◽  
Russel Towers ◽  
Stefan Baertschi ◽  
Richard Wetzel ◽  
...  

Mesenchymal stromal cells (MSCs) are one of the most frequently used cell types in regenerative medicine and cell therapy. Generating sufficient cell numbers for MSC-based therapies is constrained by: 1) their low abundance in tissues of origin, which imposes the need for significant ex vivo cell amplification, 2) donor-specific characteristics including MSC frequency/quality that decline with disease state and increasing age, 3) cellular senescence, which is promoted by extensive cell expansion and results in decreased therapeutic functionality. The final yield of a manufacturing process is therefore primarily determined by the applied isolation procedure and its efficiency in isolating therapeutically active cells from donor tissue. To date, MSCs are predominantly isolated using media supplemented with either serum or its derivatives, which pose safety and consistency issues. To overcome those limitations while enabling robust MSC production with constant high yield and quality, we developed a chemically defined biomimetic surface coating, called isoMATRIX, that facilitates the isolation of significantly higher numbers of MSCs in xeno-/serum-free and chemically defined conditions. The isolated cells display a smaller cell size and higher proliferation rate than those derived from a serum-containing isolation procedure and a strong immunomodulatory capacity. In sum, the isoMATRIX promotes enhanced xeno-, serum-free, or chemically defined isolation of human MSCs and supports consistent and reliable cell performance for improved stem cell-based therapies.


2007 ◽  
Vol 213 (1) ◽  
pp. 18-26 ◽  
Author(s):  
Claudia Lange ◽  
Figen Cakiroglu ◽  
Andrej-Nikolai Spiess ◽  
Heike Cappallo-Obermann ◽  
Judith Dierlamm ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Weichao Zhai ◽  
Jerome Tan ◽  
Tobias Russell ◽  
Sixun Chen ◽  
Dennis McGonagle ◽  
...  

AbstractHuman mesenchymal stromal cells (hMSCs) have demonstrated, in various preclinical settings, consistent ability in promoting tissue healing and improving outcomes in animal disease models. However, translation from the preclinical model into clinical practice has proven to be considerably more difficult. One key challenge being the inability to perform in situ assessment of the hMSCs in continuous culture, where the accumulation of the senescent cells impairs the culture’s viability, differentiation potential and ultimately leads to reduced therapeutic efficacies. Histochemical $$\upbeta $$ β -galactosidase staining is the current standard for measuring hMSC senescence, but this method is destructive and not label-free. In this study, we have investigated alternatives in quantification of hMSCs senescence, which included flow cytometry methods that are based on a combination of cell size measurements and fluorescence detection of SA-$$\upbeta $$ β -galactosidase activity using the fluorogenic substrate, C$${_{12}}$$ 12 FDG; and autofluorescence methods that measure fluorescence output from endogenous fluorophores including lipopigments. For identification of senescent cells in the hMSC batches produced, the non-destructive and label-free methods could be a better way forward as they involve minimum manipulations of the cells of interest, increasing the final output of the therapeutic-grade hMSC cultures. In this work, we have grown hMSC cultures over a period of 7 months and compared early and senescent hMSC passages using the advanced flow cytometry and autofluorescence methods, which were benchmarked with the current standard in $$\upbeta $$ β -galactosidase staining. Both the advanced methods demonstrated statistically significant values, (r = 0.76, p $$\le $$ ≤ 0.001 for the fluorogenic C$${_{12}}$$ 12 FDG method, and r = 0.72, p $$\le $$ ≤ 0.05 for the forward scatter method), and good fold difference ranges (1.120–4.436 for total autofluorescence mean and 1.082–6.362 for lipopigment autofluorescence mean) between early and senescent passage hMSCs. Our autofluroescence imaging and spectra decomposition platform offers additional benefit in label-free characterisation of senescent hMSC cells and could be further developed for adoption for future in situ cellular senescence evaluation by the cell manufacturers.


Sign in / Sign up

Export Citation Format

Share Document