scholarly journals A chemically defined biomimetic surface for enhanced isolation efficiency of high-quality human mesenchymal stromal cells under xeno-/serum-free conditions

2021 ◽  
Author(s):  
Kristina Thamm ◽  
Kristin Moebus ◽  
Russel Towers ◽  
Stefan Baertschi ◽  
Richard Wetzel ◽  
...  

Mesenchymal stromal cells (MSCs) are one of the most frequently used cell types in regenerative medicine and cell therapy. Generating sufficient cell numbers for MSC-based therapies is constrained by: 1) their low abundance in tissues of origin, which imposes the need for significant ex vivo cell amplification, 2) donor-specific characteristics including MSC frequency/quality that decline with disease state and increasing age, 3) cellular senescence, which is promoted by extensive cell expansion and results in decreased therapeutic functionality. The final yield of a manufacturing process is therefore primarily determined by the applied isolation procedure and its efficiency in isolating therapeutically active cells from donor tissue. To date, MSCs are predominantly isolated using media supplemented with either serum or its derivatives, which pose safety and consistency issues. To overcome those limitations while enabling robust MSC production with constant high yield and quality, we developed a chemically defined biomimetic surface coating, called isoMATRIX, that facilitates the isolation of significantly higher numbers of MSCs in xeno-/serum-free and chemically defined conditions. The isolated cells display a smaller cell size and higher proliferation rate than those derived from a serum-containing isolation procedure and a strong immunomodulatory capacity. In sum, the isoMATRIX promotes enhanced xeno-, serum-free, or chemically defined isolation of human MSCs and supports consistent and reliable cell performance for improved stem cell-based therapies.

Author(s):  
Shalmali Pendse ◽  
Vaijayanti Kale ◽  
Anuradha Vaidya

: Mesenchymal stromal cells (MSCs) regulate other cell types through a strong paracrine component called the secretome, comprising of several bioactive entities. The composition of the MSCs’ secretome is dependent upon the microenvironment in which they thrive, and hence, it could be altered by pre-conditioning the MSCs during in vitro culture. The primary aim of this review is to discuss various strategies that are being used for pre-conditioning of MSCs, also known as “priming of MSCs”, in the context of improving their therapeutic potential. Several studies have underscored the importance of extracellular vesicles (EVs) derived from primed MSCs in improving their efficacy in the treatment of various diseases. We have previously shown that co-culturing hematopoietic stem cells (HSCs) with hypoxiaprimed MSCs improves their engraftment potential. Now the question we pose is would priming of MSCs with hypoxiafavorably alter theirsecretome and would this altered secretome work as effectively as the cell to cell contact did? Here we review the current strategies of using the secretome, specifically the EVs (microvesicles and exosomes), collected from the primed MSCs with the intention of expanding HSCs ex vivo. We speculate that an effective priming of MSCs in vitrocould modulate the molecular profile of their secretome, which could eventually be used as a cell-free biologic in clinical settings.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yvonne L. Dorland ◽  
Anne S. Cornelissen ◽  
Carlijn Kuijk ◽  
Simon Tol ◽  
Mark Hoogenboezem ◽  
...  

Abstract Culture expanded mesenchymal stromal cells (MSCs) are being extensively studied for therapeutic applications, including treatment of graft-versus-host disease, osteogenesis imperfecta and for enhancing engraftment of hematopoietic stem cells after transplantation. Thus far, clinical trials have shown that the therapeutic efficiency of MSCs is variable, which may in part be due to inefficient cell migration. Here we demonstrate that human MSCs display remarkable low migratory behaviour compared to other mesodermal-derived primary human cell types. We reveal that specifically in MSCs the nucleus is irregularly shaped and nuclear lamina are prone to wrinkling. In addition, we show that expression of Lamin A/C is relatively high in MSCs. We further demonstrate that in vitro MSC migration through confined pores is limited by their nuclei, a property that might correlate to the therapeutic inefficiency of administered MSC in vivo. Silencing expression of Lamin A/C in MSCs improves nuclear envelope morphology, promotes the protrusive activity of MSCs through confined pores and enhances their retention in the lung after intravenous administration in vivo. Our findings suggest that the intrinsic nuclear lamina properties of MSCs underlie their limited capacity to migrate, and that strategies that target the nuclear lamina might alter MSC-based cellular therapies.


2020 ◽  
Vol 4 (8) ◽  
pp. 2000008
Author(s):  
Kristina Thamm ◽  
Kristin Möbus ◽  
Russell Towers ◽  
Sandra Segeletz ◽  
Richard Wetzel ◽  
...  

2021 ◽  
Vol 21 ◽  
Author(s):  
Cristiana Ulpiano ◽  
Cláudia L. da Silva ◽  
Gabriel A. Monteiro

: The Mesenchymal stromal cells (MSCs) are a diverse subset of adult multipotent precursors, known for their potential therapeutic properties in regenerative medicine mainly sustained by paracrine effects, through secretion of a variety of biologically active molecules. MSC secretome includes a wide range of soluble protein factors, composed of growth factors and cytokines, and vesicular components, which transfer proteins and genetic material modulating the host microenvironment. In particular, MSC-derived secretome mediates the different steps of the angiogenic process, inducing endothelial cell functions in vitro and promoting angiogenesis in vivo. As a result, MSCs have been widely explored as a promising cell-based therapy in diseases caused by insufficient angiogenesis. Numerous studies of myocardial infarction, ischemic stroke and critical limb ischemia in animals have shown that human MSCs can enhance angiogenesis and accelerate tissue regeneration. This extensive preclinical work encouraged the study of these remarkable cells for the treatment of these disorders in human clinical settings. The present review provides a comprehensive overview of the pro-angiogenic potential of MSCs and paracrine effectors of their secretome. In addition, bioengineering strategies including ex vivo preconditioning and genetic modification approaches, to enhance MSC innate angiogenic properties, and thereby therapeutic potency, will be presented. Finally, an update on completed preclinical and clinical studies with MSCs for the treatment of ischemia-related diseases will be discussed.


Author(s):  
Valentina Orticelli ◽  
Andrea Papait ◽  
Elsa Vertua ◽  
Patrizia Bonassi Signoroni ◽  
Pietro Romele ◽  
...  

2021 ◽  
pp. 1-14
Author(s):  
Caroline Mathen ◽  
Mrunal Ghag Sawant ◽  
Raghubansh Gupta ◽  
Wilfrid Dsouza ◽  
Shilpa G. Krishna

Mesenchymal stromal cells and the derived conditioned media represent an area of tremendous medical interest and, among other clinical applications, are currently being extensively explored for wound healing. The aim of this study was to comparatively evaluate the wound healing potential of xeno-free human umbilical cord-derived mesenchymal stromal cells (MSCs) and the conditioned media (CM) in a full-thickness excision wound model in rats. The evaluation parameters included rate of wound healing, serum cytokine analyses, collagen content, histopathology, and hyperspectral imaging as an independent qualitative and quantitative tool. Both the cell-based and cell-free approaches scored better in lower inflammation, as evidenced in lower IL-10 and stable IL-6 levels, and improved rate of wound healing (<i>p</i> &#x3c; 0.0001). More importantly, no adverse reaction or rejection was observed although human MSCs and CM were used in a xenogeneic model. The presence of hFGF, hHGF, hGCSF, hIL-1Ra, hVEGF, and hIL-6 in the secretome may elucidate the regenerative potential of the xeno-free cell-based and cell-free approaches which have translational value for advanced wound care. The results revealed the therapeutic potential of both the cell-based and cell-free approaches for wound healing.


Sign in / Sign up

Export Citation Format

Share Document