scholarly journals General Principles for the Detection of Modified Nucleotides in RNA by Specific Reagents

2021 ◽  
pp. 2100866
Author(s):  
Mark Helm ◽  
Martina C. Schmidt‐Dengler ◽  
Marlies Weber ◽  
Yuri Motorin
Keyword(s):  
2021 ◽  
Author(s):  
Denise-Liu' Leone ◽  
Martin Hubalek ◽  
Radek Pohl ◽  
Veronika Sykorova ◽  
Michal Hocek

1994 ◽  
Vol 77 (2) ◽  
pp. 586-596 ◽  
Author(s):  
Mathias K. Herrlein ◽  
Renate E. Konrad ◽  
Joachim W. Engels ◽  
Torsten Holietz ◽  
Dieter Cech

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Eman A. Ageely ◽  
Ramadevi Chilamkurthy ◽  
Sunit Jana ◽  
Leonora Abdullahu ◽  
Daniel O’Reilly ◽  
...  

AbstractCRISPR-Cas12a is a leading technology for development of model organisms, therapeutics, and diagnostics. These applications could benefit from chemical modifications that stabilize or tune enzyme properties. Here we chemically modify ribonucleotides of the AsCas12a CRISPR RNA 5′ handle, a pseudoknot structure that mediates binding to Cas12a. Gene editing in human cells required retention of several native RNA residues corresponding to predicted 2′-hydroxyl contacts. Replacing these RNA residues with a variety of ribose-modified nucleotides revealed 2′-hydroxyl sensitivity. Modified 5′ pseudoknots with as little as six out of nineteen RNA residues, with phosphorothioate linkages at remaining RNA positions, yielded heavily modified pseudoknots with robust cell-based editing. High trans activity was usually preserved with cis activity. We show that the 5′ pseudoknot can tolerate near complete modification when design is guided by structural and chemical compatibility. Rules for modification of the 5′ pseudoknot should accelerate therapeutic development and be valuable for CRISPR-Cas12a diagnostics.


Acta Naturae ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 101-105
Author(s):  
Sidney Altman ◽  
Carlos Angele-Martinez

Modified nucleotides, including phosphoramidates and mesyl nucleotides, are very effective in inactivating gene expression in bacteria. Gyr A is the target gene in several organisms, including Plasmodium falciparum. Antisense reactions with bacteria infecting citrus plants are promising but incomplete. Human tissue culture cells assayed with a different target are also susceptible to the presence of mesyl oligonucleotides.


2019 ◽  
Vol 58 (38) ◽  
pp. 13345-13348 ◽  
Author(s):  
Ivana Ivancová ◽  
Radek Pohl ◽  
Martin Hubálek ◽  
Michal Hocek

2018 ◽  
Vol 399 (11) ◽  
pp. 1265-1276 ◽  
Author(s):  
Markus T. Bohnsack ◽  
Katherine E. Sloan

Abstract Modifications in cellular RNAs have emerged as key regulators of all aspects of gene expression, including pre-mRNA splicing. During spliceosome assembly and function, the small nuclear RNAs (snRNAs) form numerous dynamic RNA-RNA and RNA-protein interactions, which are required for spliceosome assembly, correct positioning of the spliceosome on substrate pre-mRNAs and catalysis. The human snRNAs contain several base methylations as well as a myriad of pseudouridines and 2′-O-methylated nucleotides, which are largely introduced by small Cajal body-specific ribonucleoproteins (scaRNPs). Modified nucleotides typically cluster in functionally important regions of the snRNAs, suggesting that their presence could optimise the interactions of snRNAs with each other or with pre-mRNAs, or may affect the binding of spliceosomal proteins. snRNA modifications appear to play important roles in snRNP biogenesis and spliceosome assembly, and have also been proposed to influence the efficiency and fidelity of pre-mRNA splicing. Interestingly, alterations in the modification status of snRNAs have recently been observed in different cellular conditions, implying that some snRNA modifications are dynamic and raising the possibility that these modifications may fine-tune the spliceosome for particular functions. Here, we review the current knowledge on the snRNA modification machinery and discuss the timing, functions and dynamics of modifications in snRNAs.


Sign in / Sign up

Export Citation Format

Share Document