enzyme properties
Recently Published Documents


TOTAL DOCUMENTS

147
(FIVE YEARS 22)

H-INDEX

27
(FIVE YEARS 4)

Author(s):  
Thien-Kim Le ◽  
Yu-Jin Lee ◽  
Gui Hwan Han ◽  
Soo-Jin Yeom

One-carbon (C1) chemicals are potential building blocks for cheap and sustainable re-sources such as methane, methanol, formaldehyde, formate, carbon monoxide, and more. These resources have the potential to be made into raw materials for various products used in our daily life or precursors for pharmaceuticals through biological and chemical processes. Among the soluble C1 substrates, methanol is regarded as a biorenewable platform feedstock because nearly all bioresources can be converted into methanol through syngas. Synthetic methylotrophy can be exploited to produce fuels and chemicals using methanol as a feedstock that integrates natural or artificial methanol assimilation pathways in platform microorganisms. In the methanol utilization in methylotrophy, methanol dehydrogenase (Mdh) is a primary enzyme that converts methanol to formaldehyde. The discovery of new Mdhs and engineering of present Mdhs have been attempted to develop synthetic methylotrophic bacteria. In this review, we describe Mdhs, including in terms of their enzyme properties and engineering for desired activity. In addition, we specifically focus on the application of various Mdhs for synthetic methylotrophy.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Eman A. Ageely ◽  
Ramadevi Chilamkurthy ◽  
Sunit Jana ◽  
Leonora Abdullahu ◽  
Daniel O’Reilly ◽  
...  

AbstractCRISPR-Cas12a is a leading technology for development of model organisms, therapeutics, and diagnostics. These applications could benefit from chemical modifications that stabilize or tune enzyme properties. Here we chemically modify ribonucleotides of the AsCas12a CRISPR RNA 5′ handle, a pseudoknot structure that mediates binding to Cas12a. Gene editing in human cells required retention of several native RNA residues corresponding to predicted 2′-hydroxyl contacts. Replacing these RNA residues with a variety of ribose-modified nucleotides revealed 2′-hydroxyl sensitivity. Modified 5′ pseudoknots with as little as six out of nineteen RNA residues, with phosphorothioate linkages at remaining RNA positions, yielded heavily modified pseudoknots with robust cell-based editing. High trans activity was usually preserved with cis activity. We show that the 5′ pseudoknot can tolerate near complete modification when design is guided by structural and chemical compatibility. Rules for modification of the 5′ pseudoknot should accelerate therapeutic development and be valuable for CRISPR-Cas12a diagnostics.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1389
Author(s):  
Yong Quan Tan ◽  
Bo Xue ◽  
Wen Shan Yew

Enzyme engineering is an indispensable tool in the field of synthetic biology, where enzymes are challenged to carry out novel or improved functions. Achieving these goals sometimes goes beyond modifying the primary sequence of the enzyme itself. The use of protein or nucleic acid scaffolds to enhance enzyme properties has been reported for applications such as microbial production of chemicals, biosensor development and bioremediation. Key advantages of using these assemblies include optimizing reaction conditions, improving metabolic flux and increasing enzyme stability. This review summarizes recent trends in utilizing genetically encodable scaffolds, developed in line with synthetic biology methodologies, to complement the purposeful deployment of enzymes. Current molecular tools for constructing these synthetic enzyme-scaffold systems are also highlighted.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peter M. Heinemann ◽  
Daniel Armbruster ◽  
Bernhard Hauer

AbstractActive-site loops play essential roles in various catalytically important enzyme properties like activity, selectivity, and substrate scope. However, their high flexibility and diversity makes them challenging to incorporate into rational enzyme engineering strategies. Here, we report the engineering of hot-spots in loops of the cumene dioxygenase from Pseudomonas fluorescens IP01 with high impact on activity, regio- and enantioselectivity. Libraries based on alanine scan, sequence alignments, and deletions along with a novel insertion approach result in up to 16-fold increases in activity and the formation of novel products and enantiomers. CAVER analysis suggests possible increases in the active pocket volume and formation of new active-site tunnels, suggesting additional degrees of freedom of the substrate in the pocket. The combination of identified hot-spots with the Linker In Loop Insertion approach proves to be a valuable addition to future loop engineering approaches for enhanced biocatalysts.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yudai Higuchi ◽  
Daisuke Sato ◽  
Naofumi Kamimura ◽  
Eiji Masai

AbstractSphingobium sp. strain SYK-6 is an alphaproteobacterial degrader of lignin-derived aromatic compounds, which can degrade all the stereoisomers of β-aryl ether-type compounds. SYK-6 cells convert four stereoisomers of guaiacylglycerol-β-guaiacyl ether (GGE) into two enantiomers of α-(2-methoxyphenoxy)-β-hydroxypropiovanillone (MPHPV) through GGE α-carbon atom oxidation by stereoselective Cα-dehydrogenases encoded by ligD, ligL, and ligN. The ether linkages of the resulting MPHPV enantiomers are cleaved by stereoselective glutathione (GSH) S-transferases (GSTs) encoded by ligF, ligE, and ligP, generating (βR/βS)-α-glutathionyl-β-hydroxypropiovanillone (GS-HPV) and guaiacol. To date, it has been shown that the gene products of ligG and SLG_04120 (ligQ), both encoding GST, catalyze GSH removal from (βR/βS)-GS-HPV, forming achiral β-hydroxypropiovanillone. In this study, we verified the enzyme properties of LigG and LigQ and elucidated their roles in β-aryl ether catabolism. Purified LigG showed an approximately 300-fold higher specific activity for (βR)-GS-HPV than that for (βS)-GS-HPV, whereas purified LigQ showed an approximately six-fold higher specific activity for (βS)-GS-HPV than that for (βR)-GS-HPV. Analyses of mutants of ligG, ligQ, and both genes revealed that SYK-6 converted (βR)-GS-HPV using both LigG and LigQ, whereas only LigQ was involved in converting (βS)-GS-HPV. Furthermore, the disruption of both ligG and ligQ was observed to lead to the loss of the capability of SYK-6 to convert MPHPV. This suggests that GSH removal from GS-HPV catalyzed by LigG and LigQ, is essential for cellular GSH recycling during β-aryl ether catabolism.


Catalysts ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1285
Author(s):  
Hao Gan ◽  
Wenzhao Han ◽  
Jiadi Liu ◽  
Juntian Qi ◽  
Hui Li ◽  
...  

Being superior to natural enzymes, nanoenzymes are drawing a great deal of attention in the field of biosensing. Herein, we developed an ultrasensitive, stable and selective colorimetric assay having dual functionalities of Au-tipped Pt nanorods (NRs). The optical and catalytic properties of Au-tipped Pt NRs were monitored using a spectrophotometer and the chromogenic substrate 3, 3′, 5, 5′-tetramethylbenzidine (TMB) in the presence of H2O2, respectively. We found that Au-tipped Pt NRs exhibited excellent peroxidase-like activity, which decomposed hydrogen peroxide (H2O2) into oxygen (O2). The produced O2 oxidized the chromogenic substrate into a blue color product. The oxidation rate of the chromogenic substrate could be monitored using a spectrophotometer at 652 nm. Notably, the peroxidase-like activity of Au-tipped Pt NRs decreased in the presence of ascorbic acid (AA). The produced O2 preferentially reacted with AA, generating ascorbyl radicals (AA·) instead of oxidizing TMB, and thereby decreased the oxidation rate of TMB. Based on this inhibitory property, a selective colorimetric assay was developed using Au-tipped Pt NRs for the detection of AA. This work offers a novel detection method for AA.


Sign in / Sign up

Export Citation Format

Share Document