Enhancing the Mechanical Properties of AE42 Magnesium Alloy through Friction Stir Processing

2013 ◽  
Vol 16 (5) ◽  
pp. 571-580 ◽  
Author(s):  
Harpreet Singh Arora ◽  
Harpreet Singh Grewal ◽  
Harpreet Singh ◽  
Brij Kumar Dhindaw ◽  
Sundeep Mukherjee
2012 ◽  
Vol 706-709 ◽  
pp. 1823-1828 ◽  
Author(s):  
J.A. del Valle ◽  
P. Rey ◽  
D. Gesto ◽  
D. Verdera ◽  
Oscar A. Ruano

The effect of friction stir processing (FSP), on the microstructure and mechanical properties of a magnesium alloy AZ61 has been analyzed. This is a widely used wrought magnesium alloy provided in the form of rolled and annealed sheets with a grain size of 45 μm. The FSP was performed with an adequate cooling device in order to increase the heat extraction and reduce the processing temperature. The final microstructure showed a noticeable grain size refinement down to values close to 1.8 μm and an important change in texture. The change in texture favors basal slip during tensile testing leading to an increase of ductility and a decrease in yield stress. The stability of the grain size and the creep behavior at high temperatures were investigated. The optimum conditions for superplastic forming were determined; however, the presence of a large amount of cavities precludes the achievement of high superplastic elongations. Additionally, these results are compared with those obtained by severe hot rolling.


2012 ◽  
Vol 585 ◽  
pp. 397-401 ◽  
Author(s):  
M. Govindaraju ◽  
K. Rao Prasad ◽  
Uday Chakkingal ◽  
K. Balasubramanian

Friction stir processing is applied for property improvement of cast alloys for last two decades and many developmental studies were carried out in this topic on various alloys. In the current work, friction stir processing was carried out on rare earth containing magnesium alloy AE42. This alloy was specially developed for automobile application as it has better creep resistance than commercial magnesium alloys. Multi-pass Friction Stir Processing was carried out with varying the distance between passes from 0.5 mm to 2.5 mm using 12 mm shoulder diameter tool. Pin was with conical (tapered) and flat configurations with 3 mm height. After processing, the resultant mechanical and metallurgical properties were evaluated. Microstructure was refined to 5 micron and the secondary phases were made in to tiny pieces of 0.5-1 micron and evenly distributed in the matrix. Continuous network of grain boundary which is reason for poor mechanical properties was eliminated. Mechanical properties were improved by 30%. The variation of mechanical properties of processed material with respect to variation of distance between passes was negligible from 1 mm to 1.5 mm for flat pin tool.


2016 ◽  
Vol 850 ◽  
pp. 778-783 ◽  
Author(s):  
Zhi Long Lu ◽  
Da Tong Zhang

Friction stir processing (FSP) is a novel severe plastic deformation technique developed in recent years to produce fine-grained structural materials. Through increasing the processing pass, further grain refinement can be achieved. In this paper, the microstructure and mechanical properties of AZ91 magnesium alloy prepared by the single-pass and two-pass FSP were studied. The results showed that the coarse, network-like eutectic β-Mg17Al12 phase was broken into particles and some of them dissolved into the magnesium matrix, and the α-Mg grains were remarkably refined after FSP. The average grain sizes of the single-pass and two-pass FSP alloys were 8.3 μm and 5.8 μm respectively. The ultimate tensile strengths of the specimens were 284.5 MPa and 319.7 MPa, and elongations were 13% and 14.5%, respectively. The improved mechanical properties of the two-pass FSP specimen were mainly attributed to the finer grain size and more homogenized microstructure.


2015 ◽  
Vol 628 ◽  
pp. 198-206 ◽  
Author(s):  
J.A. del Valle ◽  
P. Rey ◽  
D. Gesto ◽  
D. Verdera ◽  
J.A. Jiménez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document