Tunable Förster Resonance Energy Transfer in Colloidal Nanoparticles Composed of Polycaprolactone-Tethered Donors and Acceptors: Enhanced Near-Infrared Emission and Compatibility for In Vitro and In Vivo Bioimaging

2017 ◽  
Vol 28 (7) ◽  
pp. 1705226 ◽  
Author(s):  
Cangjie Yang ◽  
Xiaochen Wang ◽  
Shuo Huang ◽  
Mingfeng Wang
RSC Advances ◽  
2014 ◽  
Vol 4 (54) ◽  
pp. 28471-28480 ◽  
Author(s):  
Atiya N. Jordan ◽  
Noureen Siraj ◽  
Susmita Das ◽  
Isiah M. Warner

Mixtures of GUMBOS were used to form binary nanomaterials with tunable emission spectra due to Förster resonance energy transfer (FRET).


2019 ◽  
Vol 2 (3) ◽  
pp. 1131-1140 ◽  
Author(s):  
Edyta Swider ◽  
Sanish Maharjan ◽  
Karlijne Houkes ◽  
Nicolaas Koen van Riessen ◽  
Carl Figdor ◽  
...  

Nanoscale ◽  
2018 ◽  
Vol 10 (21) ◽  
pp. 10025-10032 ◽  
Author(s):  
Wen Liu ◽  
Yalun Wang ◽  
Xiao Han ◽  
Ping Lu ◽  
Liang Zhu ◽  
...  

Near-infrared (NIR) fluorescence is very important for high-contrast biological imaging of high-scattering tissues such as brain tissue.


2019 ◽  
Vol 43 (8) ◽  
pp. 3317-3322 ◽  
Author(s):  
Chenyang Han ◽  
Shengjie Jiang ◽  
Jiabin Qiu ◽  
Hongyu Guo ◽  
Fafu Yang

The strong aggregation induced emission–fluorescence resonance energy transfer (AIE–FRET) effect was observed for diphenylacrylonitrile units and porphyrin units.


2020 ◽  
Author(s):  
Mayuri Sadoine ◽  
Mira Reger ◽  
Ka Man Wong ◽  
Wolf B. Frommer

ABSTRACTGenetically encoded fluorescent sugar sensors are valuable tools for the discovery of transporters and for quantitative monitoring of sugar steady-state levels in intact tissues. Genetically encoded Förster Resonance Energy Transfer sensors for glucose have been designed and optimized extensively, and a full series of affinity mutants is available for in vivo studies. However, to date, only a single improved sensor FLIPsuc-90µΔ1 with a Km for sucrose of ∼90 µM is available for sucrose monitoring. This sucrose sensor was engineered on the basis of an Agrobacterium tumefaciens sugar binding protein. Here, we took a two-step approach to first systematically improve the dynamic range of the FLIPsuc nanosensor and then expand the detection range from micromolar to millimolar sucrose concentrations by mutating a key residue in the binding site. The resulting series of sucrose sensors may allow systematic investigation of sucrose transporter candidates and comprehensive in vivo analyses of sucrose concentration in plants. Since FLIPsuc-90µ also detects trehalose in animal cells, the new series of sensors can be used to investigate trehalose transporter candidates and monitor trehalose steady-state levels in vivo as well.


Nanomedicine ◽  
2021 ◽  
Author(s):  
Samuel Bonnet ◽  
Rana Elfatairi ◽  
Florence Franconi ◽  
Emilie Roger ◽  
Samuel Legeay

To understand how nanoparticles (NPs) interact with biological barriers and to ensure they maintain their integrity over time, it is crucial to study their in vivo pharmacokinetic (PK) profiles. Many methods of tracking have been used to describe the in vivo fate of NPs and to evaluate their PKs and structural integrity. However, they do not deliver the same level of information and this may cause misinterpretations. Here, the authors review and discuss the different methods for in vivo tracking of organic NPs. Among them, Förster resonance energy transfer (FRET) presents great potential to track NPs' integrity. However, FRET still requires validated methods to extract and quantify NPs in biological fluids and tissues.


Sign in / Sign up

Export Citation Format

Share Document