biological barriers
Recently Published Documents


TOTAL DOCUMENTS

220
(FIVE YEARS 94)

H-INDEX

30
(FIVE YEARS 10)

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 226
Author(s):  
Jie Tang ◽  
Larry Cai ◽  
Chuanfei Xu ◽  
Si Sun ◽  
Yuheng Liu ◽  
...  

Recent advancements in the field of in vitro transcribed mRNA (IVT-mRNA) vaccination have attracted considerable attention to such vaccination as a cutting-edge technique against infectious diseases including COVID-19 caused by SARS-CoV-2. While numerous pathogens infect the host through the respiratory mucosa, conventional parenterally administered vaccines are unable to induce protective immunity at mucosal surfaces. Mucosal immunization enables the induction of both mucosal and systemic immunity, efficiently removing pathogens from the mucosa before an infection occurs. Although respiratory mucosal vaccination is highly appealing, successful nasal or pulmonary delivery of nucleic acid-based vaccines is challenging because of several physical and biological barriers at the airway mucosal site, such as a variety of protective enzymes and mucociliary clearance, which remove exogenously inhaled substances. Hence, advanced nanotechnologies enabling delivery of DNA and IVT-mRNA to the nasal and pulmonary mucosa are urgently needed. Ideal nanocarriers for nucleic acid vaccines should be able to efficiently load and protect genetic payloads, overcome physical and biological barriers at the airway mucosal site, facilitate transfection in targeted epithelial or antigen-presenting cells, and incorporate adjuvants. In this review, we discuss recent developments in nucleic acid delivery systems that target airway mucosa for vaccination purposes.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2167
Author(s):  
Thomas C. Chen ◽  
Clovis O. da Fonseca ◽  
Daniel Levin ◽  
Axel H. Schönthal

Perillyl alcohol (POH) is a naturally occurring monoterpenoid related to limonene that is present in the essential oils of various plants. It has diverse applications and can be found in household items, including foods, cosmetics, and cleaning supplies. Over the past three decades, it has also been investigated for its potential anticancer activity. Clinical trials with an oral POH formulation administered to cancer patients failed to realize therapeutic expectations, although an intra-nasal POH formulation yielded encouraging results in malignant glioma patients. Based on its amphipathic nature, POH revealed the ability to overcome biological barriers, primarily the blood–brain barrier (BBB), but also the cytoplasmic membrane and the skin, which appear to be characteristics that critically contribute to POH’s value for drug development and delivery. In this review, we present the physicochemical properties of POH that underlie its ability to overcome the obstacles placed by different types of biological barriers and consequently shape its multifaceted promise for cancer therapy and applications in drug development. We summarized and appraised the great variety of preclinical and clinical studies that investigated the use of POH for intranasal delivery and nose-to-brain drug transport, its intra-arterial delivery for BBB opening, and its permeation-enhancing function in hybrid molecules, where POH is combined with or conjugated to other therapeutic pharmacologic agents, yielding new chemical entities with novel mechanisms of action and applications.


Nanomedicine ◽  
2021 ◽  
Author(s):  
Lan-Min Wang ◽  
Yu-Ting Wang ◽  
Wan-Xi Yang

Engineered nanoparticles (ENPs) are widely used in medical diagnosis and treatment, as food additives and as energy materials. ENPs may exert adverse or beneficial effects on the human body, which may be linked to interactions with biological barriers. In this review, the authors summarize the influences of four typical metal/metal oxide nanomaterials (Ag, TiO2, Au, ZnO nanoparticles) on the paracellular permeability of biological barriers. Disruptions on tight junctions, adhesion junctions, gap junctions and desmosomes via complex signaling pathways, such as the MAPK, PKC and ROCK signaling pathways, affect paracellular permeability. Reactive oxygen species and cytokines underlie the mechanism of ENP-triggered alterations in paracellular permeability. This review provides the information necessary for the cautious application of nanoparticles in medicine and life sciences in the future.


Nanomedicine ◽  
2021 ◽  
Author(s):  
Samuel Bonnet ◽  
Rana Elfatairi ◽  
Florence Franconi ◽  
Emilie Roger ◽  
Samuel Legeay

To understand how nanoparticles (NPs) interact with biological barriers and to ensure they maintain their integrity over time, it is crucial to study their in vivo pharmacokinetic (PK) profiles. Many methods of tracking have been used to describe the in vivo fate of NPs and to evaluate their PKs and structural integrity. However, they do not deliver the same level of information and this may cause misinterpretations. Here, the authors review and discuss the different methods for in vivo tracking of organic NPs. Among them, Förster resonance energy transfer (FRET) presents great potential to track NPs' integrity. However, FRET still requires validated methods to extract and quantify NPs in biological fluids and tissues.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6786
Author(s):  
Gulnara Gaynanova ◽  
Leysan Vasileva ◽  
Ruslan Kashapov ◽  
Darya Kuznetsova ◽  
Rushana Kushnazarova ◽  
...  

This review focuses on key topics in the field of drug delivery related to the design of nanocarriers answering the biomedicine criteria, including biocompatibility, biodegradability, low toxicity, and the ability to overcome biological barriers. For these reasons, much attention is paid to the amphiphile-based carriers composed of natural building blocks, lipids, and their structural analogues and synthetic surfactants that are capable of self-assembly with the formation of a variety of supramolecular aggregates. The latter are dynamic structures that can be used as nanocontainers for hydrophobic drugs to increase their solubility and bioavailability. In this section, biodegradable cationic surfactants bearing cleavable fragments are discussed, with ester- and carbamate-containing analogs, as well as amino acid derivatives received special attention. Drug delivery through the biological barriers is a challenging task, which is highlighted by the example of transdermal method of drug administration. In this paper, nonionic surfactants are primarily discussed, including their application for the fabrication of nanocarriers, their surfactant-skin interactions, the mechanisms of modulating their permeability, and the factors controlling drug encapsulation, release, and targeted delivery. Different types of nanocarriers are covered, including niosomes, transfersomes, invasomes and chitosomes, with their morphological specificity, beneficial characteristics and limitations discussed.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Alessandro Parodi ◽  
Polina Buzaeva ◽  
Daria Nigovora ◽  
Alexey Baldin ◽  
Dmitry Kostyushev ◽  
...  

Abstract Oral administration is an appealing route of delivering cancer treatments. However, the gastrointestinal tract is characterized by specific and efficient physical, chemical, and biological barriers that decrease the bioavailability of medications, including chemotherapeutics. In recent decades, the fields of material science and nanomedicine have generated several delivery platforms with high potential for overcoming multiple barriers associated to oral administration. This review describes the properties of several nanodelivery systems that improve the bioavailability of orally administered therapeutics, highlighting their advantages and disadvantages in generating successful anticancer oral nanomedicines. Graphical Abstract


2021 ◽  
Vol 177 ◽  
pp. 113963
Author(s):  
M.N.V. Ravi Kumar ◽  
Carsten Ehrhardt ◽  
Marc Schneider ◽  
Udo Bakowsky ◽  
Alf Lamprecht

Chemosphere ◽  
2021 ◽  
pp. 132556
Author(s):  
Wudi Hao ◽  
Chenyu Hao ◽  
Chengrong Wu ◽  
Yuqing Xu ◽  
Cuihong Jin
Keyword(s):  

2021 ◽  
Vol 9 ◽  
Author(s):  
Daniela Andrea Ramirez ◽  
María Fernanda Federici ◽  
Jorgelina Cecilia Altamirano ◽  
Alejandra Beatriz Camargo ◽  
Juan María Luco

Among healthy vegetables, those of the genus Allium stand out. Antioxidant and anti-inflammatory properties have been associated with these vegetables, attributed mainly to organosulfur compounds (OSCs). In turn, they are linked to a protective effect counteracting cardiovascular disease development. Now, to really ensure the bioactive efficacy of the said compounds once consumed, it is necessary to previously evaluate the ADME (absorption, distribution, metabolism, and excretion) profile. Alternatively, in vitro and in silico methods attempt to avoid or reduce experimental animals’ use and provide preliminary information on drugs’ ability to overcome the various biological barriers inherent in the ADME process. In this sense, in silico methods serve to provide primary information on drugs’ bioavailability mechanisms. High-performance liquid chromatography (HPLC) using a stationary phase composed of phospholipids, the so-called immobilized artificial membrane (IAM), has been widely recognized as a valuable alternative method to extract and quantify information about the structure and physicochemical properties of organic compounds which are extensively used in studies of quantitative structure–activity relationships (QSARs). In the present study, the chromatographic capacity factors (log k’ (IAM)) for 28 OSCs were determined by IAM-HPLC. In order to evaluate the ability of the IAM phase in assessing lipophilicity of the compounds under study, several quantitative structure–retention relationships (QSRRs) were derived from exploring fundamental intermolecular interactions that govern the retention of compounds under study on IAM phases. As expected, the hydrophobic factors are of prime importance for the IAM retention of these compounds. However, the molecular flexibility and specific polar interactions expressed by several electronic descriptors (relative negative charge, RNCG, and Mulliken electronegativity) are also involved. We also evaluated the IAM phase ability to assess several ADME parameters for the OSCs under study obtained using the SwissADME web tool integrated into the SwissDrugDesign workspace and the PreADMET web tool. The human gastrointestinal absorption (HIA), blood–brain barrier (BBB) permeation, and skin permeability were investigated through QSAR modeling, using several chemometric approaches. The ADME properties under study are strongly dependent on hydrophobic factors as expressed by log k’(IAM), which provide evidence for the great potential of the IAM phases in the development of QSAR models.


Sign in / Sign up

Export Citation Format

Share Document