scholarly journals Materials Informatics Reveals Unexplored Structure Space in Cuprate Superconductors

2021 ◽  
pp. 2104696 ◽  
Author(s):  
Rhys E. A. Goodall ◽  
Bonan Zhu ◽  
Judith L. MacManus‐Driscoll ◽  
Alpha A. Lee
Author(s):  
S. J. Pennycook ◽  
P. D. Nellist ◽  
N. D. Browning ◽  
P. A. Langjahr ◽  
M. Rühle

The simultaneous use of Z-contrast imaging with parallel detection EELS in the STEM provides a powerful means for determining the atomic structure of grain boundaries. The incoherent Z-contrast image of the high atomic number columns can be directly inverted to their real space arrangement, without the use of preconceived structure models. Positions and intensities may be accurately quantified through a maximum entropy analysis. Light elements that are not visible in the Z-contrast image can be studied through EELS; their coordination polyhedra determined from the spectral fine structure. It even appears feasible to contemplate 3D structure refinement through multiple scattering calculations.The power of this approach is illustrated by the recent study of a series of SrTiC>3 bicrystals, which has provided significant insight into some of the basic issues of grain boundaries in ceramics. Figure 1 shows the structural units deduced from a set of 24°, 36° and 65° symmetric boundaries, and 24° and 45° asymmetric boundaries. It can be seen that apart from unit cells and fragments from the perfect crystal, only three units are needed to construct any arbitrary tilt boundary. For symmetric boundaries, only two units are required, each having the same Burgers, vector of a<100>. Both units are pentagons, on either the Sr or Ti sublattice, and both contain two columns of the other sublattice, imaging in positions too close for the atoms in each column to be coplanar. Each column was therefore assumed to be half full, with the pair forming a single zig-zag column. For asymmetric boundaries, crystal geometry requires two types of dislocations; the additional unit was found to have a Burgers’ vector of a<110>. Such a unit is a larger source of strain, and is especially important to the transport characteristics of cuprate superconductors. These zig-zag columns avoid the problem of like-ion repulsion; they have also been seen in TiO2 and YBa2Cu3O7-x and may be a general feature of ionic materials.


1988 ◽  
Vol 49 (C8) ◽  
pp. C8-2231-C8-2232
Author(s):  
A. M. Portis ◽  
M. Stalder ◽  
G. Stefanicki ◽  
F. Waldner ◽  
M. Warden

2020 ◽  
Vol 7 (2) ◽  
pp. 77
Author(s):  
JieSheng Mang ◽  
Rozlin Zainal ◽  
Indera Syahrul Mat Radzuan

Focusing on Klang Valley, this research studies the outcome of house purchase factors in Malaysia. This research identifies the house purchase factors that affect home buyers’ purchase decisions. The researcher collected data using SurveyMonkey by using a questionnaire to elicit the opinions of Klang Valley residents on housing purchase factors and purchase decision. The factors were evaluated and studied to identify their influence on home buyers’ purchase decision. Findings show that home buyers’ purchase decision are influenced by house structure, space, finance, location, and neighbourhood factors. The findings have laid a foundation for the housing industry to improve.


1993 ◽  
Vol 20 (3) ◽  
pp. 269-274
Author(s):  
Chao-Fan Yu ◽  
Zhen-Qing Yang ◽  
Guo-Zhu He

1992 ◽  
Vol 06 (05n06) ◽  
pp. 509-526
Author(s):  
Subir Sachdev

A phenomenological model, F, of the superconducting phase of systems with spin-charge separation and antiferromagnetically induced pairing is studied. Above Hc1, magnetic flux can always pierce the superconductor in vortices with flux hc/2e, but regimes are found in which vortices with flux hc/e are preferred. Little-Park and other experiments, which examine periodicities with a varying magnetic field, always observe a period of hc/2e. The low energy properties of a symplectic large-N expansion of a model of the cuprate superconductors are argued to be well described by F. This analysis and some normal state properties of the cuprates suggest that hc/e vortices should be stable at the lowest dopings away from the insulating state at which superconductivity first occurs.


2020 ◽  
Vol 28 (1) ◽  
Author(s):  
H. M. Abu-Donia ◽  
Rodyna A. Hosny

Abstract Weak structure space (briefly, wss) has master looks, when the whole space is not open, and these classes of subsets are not closed under arbitrary unions and finite intersections, which classify it from typical topology. Our main target of this article is to introduce $$\psi _{{\mathcal {H}}}(.)$$ ψ H ( . ) -operator in hereditary class weak structure space (briefly, $${\mathcal {H}}wss$$ H w s s ) $$(X, w, {\mathcal {H}})$$ ( X , w , H ) and examine a number of its characteristics. Additionally, we clarify some relations that are credible in topological spaces but cannot be realized in generalized ones. As a generalization of w-open sets and w-semiopen sets, certain new kind of sets in a weak structure space via $$\psi _{{\mathcal {H}}}(.)$$ ψ H ( . ) -operator called $$\psi _{{\mathcal {H}}}$$ ψ H -semiopen sets are introduced. We prove that the family of $$\psi _{{\mathcal {H}}}$$ ψ H -semiopen sets composes a supra-topology on X. In view of hereditary class $${\mathcal {H}}_{0}$$ H 0 , $$w T_{1}$$ w T 1 -axiom is formulated and also some of their features are investigated.


Sign in / Sign up

Export Citation Format

Share Document