Combined Methylglyoxal Scavenger and Collagen Hydrogel Therapy Prevents Adverse Remodeling and Improves Cardiac Function Post‐Myocardial Infarction

2021 ◽  
pp. 2108630
Author(s):  
Cagla Eren Cimenci ◽  
Nick J. R. Blackburn ◽  
Veronika Sedlakova ◽  
Justina Pupkaite ◽  
Marcelo Munoz ◽  
...  
2019 ◽  
Vol 125 (Suppl_1) ◽  
Author(s):  
Gabriel A Grilo ◽  
Patti R Shaver ◽  
Rugmani P Iyer ◽  
Lisandra E de Castro Brás

2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Anastasios Lymperopoulos ◽  
Giuseppe Rengo ◽  
Erhe Gao ◽  
Ashley Siryk ◽  
Samalia Dabul ◽  
...  

Introduction: Chronic heart failure (HF) is characterized by enhanced circulating cardiotoxic hormones, among the most prominent of which is aldosterone, which contributes to the increased morbidity and mortality of the disease by promoting cardiac adverse remodeling post-myocardial infarction (MI). Cardiac β-adrenergic receptor (ΑR) desensitization and downregulation are a hallmark abnormality in HF at the molecular level and are due to the concerted action of cardiac G protein-coupled receptor kinase-2 (GRK2), together with its co-factors in receptor desensitization, the βarrestins (βarrs). We have also recently established that βarr1 promotes angiotensin II-dependent aldosterone production in the adrenal cortex, and this leads to elevated circulating aldosterone levels in vivo, both under normal conditions and during post-MI HF progression. Hypothesis: Herein, we sought to investigate the effects of genetically deleting βarr1 on post-MI cardiac function and hyperaldosteronic status in mice progressing to HF. Methods: We uitilized the βarr1KO mouse model and studied these mice at 4 weeks after surgically induced MI, in parallel with C57/B6 wild type (WT) controls. Cardiac function was assessed by echocardiography and in vivo catheterization. Plasma aldosterone was measured by ELISA. Results: Cardiac function is markedly improved in βarr1KO`s at 4 weeks post-MI, as evidenced by increased ejection fraction compared to WT mice (41.5 + 2.8 % vs. 21.8 + 2.4 %, respectively, n=9, p<0.0001) and increased isoproterenol-induced contractility. Additionally, cardiac dimensions are significantly reduced compared to WT`s, indicating attenuation of adverse cardiac remodeling. Importantly, plasma circulating aldosterone levels are significantly lowered and cardiac βAR signaling and function appear elevated in post-MI βarr1KO`s compared to control WT`s. Conclusions: Genetic deletion of βarr1 substantially improves cardiac function, adverse remodeling, hyperaldosteronism, and cardiac βAR function during post-MI HF progression. The underlying mechanism is attenuation of both cardiac βAR desensitization/downregulation and adrenal aldosterone production, which is βarr1-dependent.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Jianrui Song ◽  
Thomas Vigil ◽  
Yutein Chung ◽  
Ryan Frieler ◽  
Sascha Goonewardena ◽  
...  

Introduction: Cardiac remodeling post myocardial infarction (MI) can be a critical determinant of outcome for patients with MI. Well-contained inflammation results in successful infarct healing while excessive inflammation cause adverse remodeling which leads to heart failure. Macrophages are important participants in inflammation, helping resolve pro-inflammatory reactions and performing reparative processes. Reprogramming macrophages towards a resolving and reparative phenotype is a potential therapeutic approach. We hypothesized that IL4/IL13-induced, alternatively activated macrophages (M2) have an important role in cardiac remodeling post-MI, and we tested this hypothesis in a mouse model of MI using myeloid-specific IL4 receptor α knockout mice (MyIL4RaKO). Methods: MyIL4RaKO mice were generated using IL4Ra flox/flox ;LysM-Cre. MI was induced by ligating the left anterior descending coronary artery. Hearts were cut into 1mm sections, and then stained by tetrazolium chloride for infarct size measurement. Evenly spaced radians were taken through the infarct with the center of left ventricle in 5μm heart sections, and the average infarct thickness was calculated. qPCR was used to determine gene expression. Echocardiography was performed at baseline and 3 weeks post MI. Results: Initial infarct size was not affected by IL4Ra knockout but at 1-week post MI, infarct size of MyIL4RaKO mice (16.54 ± 2.433, n=11) was shown significantly smaller than that of FC mice (24.96 ± 2.005, n=15) showing changes in remodeling (p= 0.0129). Changes in remodeling continued and at 3-week post MI, infarct thickness of MyIL4RaKO mice (0.2171 ± 0.01053, n=6) was significantly increased, compared with that of FC mice (0.3508 ± 0.03629, n=8, p= 0.0094). These changes were accompanied by MyIL4RaKO mice also showed lower level of fibrosis markers: Col1A1 and Plod2. A significantly lower ejection fraction was observed in MyIL4RaKO mice (25.46 ± 3.749, n=5) compared with FC mice (37.90 ± 2.309, n=5) at 3 weeks (p= 0.0223). Conclusions: Myeloid-specific IL4Ra knockout results in alteration of remodeling, altered fibrosis and decreased cardiac function post MI, although the cardiac hypertrophy did not show significant change.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Anastasios Lymperopoulos ◽  
Karlee Walklett ◽  
Samalia Dabul ◽  
Ashley Siryk ◽  
Emmanuel Sturchler ◽  
...  

Introduction: The scaffolding protein βarrestin1 (βarr1) by the angiotensin II (AngII) type 1 receptor (AT 1 R) mediates AngII-induced aldosterone production in vitro and physiologically in vivo, thereby exacerbating heart failure (HF) progression post-myocardial infarction (MI). Herein, we sought to investigate the relative potency of various AT 1 R antagonist drugs (sartans) at inhibiting βarr vs. G protein activation and hence aldosterone production in vitro and in vivo. We also investigated the alterations in plasma aldosterone levels conferred by these agents and their impact on cardiac function of post-MI rats. Methods: For the in vitro tests, transfected CHO and adrenocortical H295R cells were used. For in vivo studies, post-MI rats overexpressing βarr1 in their adrenals received 7-day-long treatments with the drugs of interest. Results: Among the sartans tested, candesartan and valsartan were the most potent βarr activation and βarr-mediated aldosterone production inhibitors in vitro, as well as the most “biased” antagonists towards βarr vs. G-protein inhibition. Conversely, losartan and irbesartan were the least potent βarr inhibitors and the least “biased” antagonists towards βarr inhibition. These in vitro findings were corroborated in vivo, since candesartan and valsartan, contrary to irbesartan, caused significant plasma aldosterone reductions in post-MI rats. Accordingly, cardiac ejection fraction (EF) and contractility were significantly augmented in candesartan- and valsartan-treated rats (EF: 41.1±1% and 40±1% respectively, vs. 35±0.3% for saline-treated), but further deteriorated in irbesartan-treated post-MI rats (EF: 32±1%, n=7 rats/group). Conclusions: These findings provide important insights that might aid pharmacotherapeutic decisions (i.e. individual agent selections) involving this commonly prescribed cardiovascular drug class (sartans).


PLoS ONE ◽  
2015 ◽  
Vol 10 (9) ◽  
pp. e0137515 ◽  
Author(s):  
Anne-Laure Leblond ◽  
Kerstin Klinkert ◽  
Kenneth Martin ◽  
Elizebeth C. Turner ◽  
Arun H. Kumar ◽  
...  

Medicine ◽  
2019 ◽  
Vol 98 (10) ◽  
pp. e14637 ◽  
Author(s):  
Fumitsugu Yoshikawa ◽  
Tetsu Nakajima ◽  
Masaharu Hanada ◽  
Kazuo Hirata ◽  
Tohru Masuyama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document