Abstract 295: Enhanced Cardiac Function And Lower Circulating Aldosterone Levels In βArrestin1 Knockout Mice During Post-myocardial Infarction Heart Failure Progression

2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Anastasios Lymperopoulos ◽  
Giuseppe Rengo ◽  
Erhe Gao ◽  
Ashley Siryk ◽  
Samalia Dabul ◽  
...  

Introduction: Chronic heart failure (HF) is characterized by enhanced circulating cardiotoxic hormones, among the most prominent of which is aldosterone, which contributes to the increased morbidity and mortality of the disease by promoting cardiac adverse remodeling post-myocardial infarction (MI). Cardiac β-adrenergic receptor (ΑR) desensitization and downregulation are a hallmark abnormality in HF at the molecular level and are due to the concerted action of cardiac G protein-coupled receptor kinase-2 (GRK2), together with its co-factors in receptor desensitization, the βarrestins (βarrs). We have also recently established that βarr1 promotes angiotensin II-dependent aldosterone production in the adrenal cortex, and this leads to elevated circulating aldosterone levels in vivo, both under normal conditions and during post-MI HF progression. Hypothesis: Herein, we sought to investigate the effects of genetically deleting βarr1 on post-MI cardiac function and hyperaldosteronic status in mice progressing to HF. Methods: We uitilized the βarr1KO mouse model and studied these mice at 4 weeks after surgically induced MI, in parallel with C57/B6 wild type (WT) controls. Cardiac function was assessed by echocardiography and in vivo catheterization. Plasma aldosterone was measured by ELISA. Results: Cardiac function is markedly improved in βarr1KO`s at 4 weeks post-MI, as evidenced by increased ejection fraction compared to WT mice (41.5 + 2.8 % vs. 21.8 + 2.4 %, respectively, n=9, p<0.0001) and increased isoproterenol-induced contractility. Additionally, cardiac dimensions are significantly reduced compared to WT`s, indicating attenuation of adverse cardiac remodeling. Importantly, plasma circulating aldosterone levels are significantly lowered and cardiac βAR signaling and function appear elevated in post-MI βarr1KO`s compared to control WT`s. Conclusions: Genetic deletion of βarr1 substantially improves cardiac function, adverse remodeling, hyperaldosteronism, and cardiac βAR function during post-MI HF progression. The underlying mechanism is attenuation of both cardiac βAR desensitization/downregulation and adrenal aldosterone production, which is βarr1-dependent.

2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Anastasios Lymperopoulos ◽  
Karlee Walklett ◽  
Samalia Dabul ◽  
Ashley Siryk ◽  
Emmanuel Sturchler ◽  
...  

Introduction: The scaffolding protein βarrestin1 (βarr1) by the angiotensin II (AngII) type 1 receptor (AT 1 R) mediates AngII-induced aldosterone production in vitro and physiologically in vivo, thereby exacerbating heart failure (HF) progression post-myocardial infarction (MI). Herein, we sought to investigate the relative potency of various AT 1 R antagonist drugs (sartans) at inhibiting βarr vs. G protein activation and hence aldosterone production in vitro and in vivo. We also investigated the alterations in plasma aldosterone levels conferred by these agents and their impact on cardiac function of post-MI rats. Methods: For the in vitro tests, transfected CHO and adrenocortical H295R cells were used. For in vivo studies, post-MI rats overexpressing βarr1 in their adrenals received 7-day-long treatments with the drugs of interest. Results: Among the sartans tested, candesartan and valsartan were the most potent βarr activation and βarr-mediated aldosterone production inhibitors in vitro, as well as the most “biased” antagonists towards βarr vs. G-protein inhibition. Conversely, losartan and irbesartan were the least potent βarr inhibitors and the least “biased” antagonists towards βarr inhibition. These in vitro findings were corroborated in vivo, since candesartan and valsartan, contrary to irbesartan, caused significant plasma aldosterone reductions in post-MI rats. Accordingly, cardiac ejection fraction (EF) and contractility were significantly augmented in candesartan- and valsartan-treated rats (EF: 41.1±1% and 40±1% respectively, vs. 35±0.3% for saline-treated), but further deteriorated in irbesartan-treated post-MI rats (EF: 32±1%, n=7 rats/group). Conclusions: These findings provide important insights that might aid pharmacotherapeutic decisions (i.e. individual agent selections) involving this commonly prescribed cardiovascular drug class (sartans).


2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Jian Zhou ◽  
Xiujuan Duan ◽  
Jibing Wang ◽  
Yunhong Feng ◽  
Jiangyong Yuan

Objective. This study is aimed at determining the expression and function of the GASL1 and PI3K/AKT pathways in isoproterenol- (ISO-) induced heart failure (HF). To determine the moderating effect of valsartan (VAL) on the progression of ISO-induced HF and to elucidate the related mechanism. Materials and Methods. First, in in vivo experiment, we examined the effect of VAL on cardiac function in rats with ISO-induced HF. Similarly, quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were used to detect the effect of VAL on ISO-treated rat primary cardiomyocytes. Then, si-GASL1-transfected primary cardiomyocytes were constructed and Ad-si-GASL1 was injected through rat tail vein to achieve the effect of lowering GASL1 expression, so as to investigate the role of GASL1 in VAL’s treatment of ISO-induced HF. Results. In ISO-induced HF rat models, the GASL1 decreased while PI3K and p-AKT expressions were abnormally elevated and cardiac function deteriorated, and VAL was able to reverse these changes. In primary cardiomyocytes, ISO induces apoptosis of cardiomyocytes, and expression of GASL1 decreased while PI3K and p-AKT were abnormally elevated, which can be reversed by VAL. The transfection of primary cardiomyocytes with si-GASL1 confirmed that GASL1 affected the expression of PI3K, p-AKT, and the apoptosis of primary cardiomyocytes. Rat myocardium injected with Ad-si-GASL1 was found to aggravate the cardiac function improved by VAL. Conclusions. This study was the first to confirm that VAL improves ISO-induced HF by regulating the PI3K/AKT pathway through GASL1. And this study demonstrated a significant correlation between HF, VAL, GASL1, and the PI3K/AKT pathway.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Jerome Thireau ◽  
Charlotte Farah ◽  
Muriel Bouly ◽  
Jerome Roussel ◽  
Alain Lacampagne ◽  
...  

Introduction: Targeting leaky cardiac ryanodine receptors (RyR2) to prevent diastolic Ca2+ release from the sarcoplasmic reticulum (SR) is a promising pharmacological approach, to rescue the impaired cardiac contraction and prevent Ca2+-dependent arrhythmias in heart failure (HF) and disease. Hypothesis: Based on prior work from the Marks group, the Rycal S44121 (also known as ARM036) is an experimental small molecule stabilizer of RyR. We investigated the effects of S44121 in a post-myocardial infarction (PMI) mouse model of HF. Methods and results: Mice were randomly assigned to 3 groups: Sham, PMI (subjected to left coronary artery ligation), and PMI-S (treated for 3 weeks with S44121 by subcutaneous osmotic pumps on day 7 post-MI, 10 mg/kg/day). Intracellular Ca2+ was measured on single left ventricular myocytes. PMI mice exhibited a 4-fold increase in the frequency of spontaneous Ca2+ release events, Ca2+ sparks, as measured in quiescent cells using the fluorescent Ca2+ indicator Fluo-4. PMI mice also exhibited higher global diastolic Ca2+, measured with the ratiometric fluorescent probe, Indo-1 AM, and increased the occurrence of ectopic diastolic Ca2+ waves. Acute application of S44121 (10 μM for 15 min) reduced Ca2+ sparks frequency. Chronic treatment of mice with S44121 also normalized the frequency of Ca2+ sparks and of ectopic Ca2+ waves, and corrected diastolic cellular Ca2+ overload. Effects were maximal at 20 mg/kg/day. Furthermore, treatment with S44121 abolished Ca2+ waves promoted by β-adrenergic challenge (acute application of isoproterenol, 10 nM). The potential anti-arrhythmic benefit of S44121 was assessed in vivo using telemetric surface electrocardiograms. S44121 had no effect on ECG intervals and did not alter the heart rate. However, anti-arrhythmic effects were confirmed by observation of a dose-dependent reduction of spontaneous ventricular extrasystoles and ventricular tachycardia. Near maximum benefits were observed at 10 mg/kg/day, both in basal conditions or following a challenge with acute treatment of isoproterenol (0.5 mg/kg, dosed ip). Conclusion: In mice with post-ischemic HF, treatment with S44121 prevented the abnormal diastolic SR Ca2+ leak and ectopic Ca2+ waves, and reduced ventricular arrhythmias.


2019 ◽  
Vol 125 (Suppl_1) ◽  
Author(s):  
Gabriel A Grilo ◽  
Patti R Shaver ◽  
Rugmani P Iyer ◽  
Lisandra E de Castro Brás

Circulation ◽  
2017 ◽  
Vol 135 (4) ◽  
pp. 400-402 ◽  
Author(s):  
Dorothee Atzler ◽  
Debra J. McAndrew ◽  
Kathrin Cordts ◽  
Jürgen E. Schneider ◽  
Sevasti Zervou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document