Surface Electronic Structure Modulation of Cobalt Nitride Nanowire Arrays via Selenium Deposition for Efficient Hydrogen Evolution

2021 ◽  
pp. 2109792
Author(s):  
Yiqiang Sun ◽  
Keke Mao ◽  
Qi Shen ◽  
Lei Zhao ◽  
Chuanxin Shi ◽  
...  
2021 ◽  
Vol 46 (33) ◽  
pp. 17133-17142
Author(s):  
Caichi Liu ◽  
Yongchuan Hu ◽  
Fang Liu ◽  
Hui Liu ◽  
Xuewen Xu ◽  
...  

2021 ◽  
Author(s):  
Mingqiang Liu ◽  
Jia-ao Wang ◽  
Gui-Gen Wang ◽  
Fei Li ◽  
Ya-Wei Cai ◽  
...  

Abstract Molybdenum disulfide, as an electronic highly-adjustable catalysts material, tuning its electronic structure is crucial to enhance its intrinsic hydrogen evolution reaction (HER) activity. Nevertheless, there are yet huge challenges to the understanding and regulation of the surface electronic structure of molybdenum disulfide-based catalysts. Here we address these challenges by tuning its electronic structure of phase modulation synergistic with interfacial chemistry and defects from phosphorus or sulfur implantation, and we then successfully design and synthesize electrocatalysts with the multi-heterojunction interfaces (e.g., 1T0.81-MoS2@Ni2P), demonstrating superior HER activities and good stabilities with a small overpotentials of 38.9 and 98.5 mV at 10 mA/cm2, a low Tafel slopes of 41 and 42 mV/dec in acidic as well as alkaline surroundings, outperforming commercial Pt/C catalyst and other reported Mo-based catalysts. Theoretical calculation verified that the incorporation of metallic-phase and intrinsic HER-active Ni-based materials into molybdenum disulfide could effectively regulate its electronic structure for making the bandgap narrower. Additionally, reduced nickel possesses empty orbitals, which is helpful for additional H binding ability. All these factors can decrease Mo-H bond strength, greatly improving the HER catalytic activity of these materials.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mingqiang Liu ◽  
Jia-Ao Wang ◽  
Wantana Klysubun ◽  
Gui-Gen Wang ◽  
Suchinda Sattayaporn ◽  
...  

AbstractMolybdenum disulfide, as an electronic highly-adjustable catalysts material, tuning its electronic structure is crucial to enhance its intrinsic hydrogen evolution reaction (HER) activity. Nevertheless, there are yet huge challenges to the understanding and regulation of the surface electronic structure of molybdenum disulfide-based catalysts. Here we address these challenges by tuning its electronic structure of phase modulation synergistic with interfacial chemistry and defects from phosphorus or sulfur implantation, and we then successfully design and synthesize electrocatalysts with the multi-heterojunction interfaces (e.g., 1T0.81-MoS2@Ni2P), demonstrating superior HER activities and good stabilities with a small overpotentials of 38.9 and 95 mV at 10 mA/cm2, a low Tafel slopes of 41 and 42 mV/dec in acidic as well as alkaline surroundings, outperforming commercial Pt/C catalyst and other reported Mo-based catalysts. Theoretical calculation verified that the incorporation of metallic-phase and intrinsic HER-active Ni-based materials into molybdenum disulfide could effectively regulate its electronic structure for making the bandgap narrower. Additionally, X-ray absorption spectroscopy indicate that reduced nickel possesses empty orbitals, which is helpful for additional H binding ability. All these factors can decrease Mo-H bond strength, greatly improving the HER catalytic activity of these materials.


Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1237
Author(s):  
Maoqi Cao ◽  
Xiaofeng Li ◽  
Dingding Xiang ◽  
Dawang Wu ◽  
Sailan Sun ◽  
...  

Electrochemical hydrogen evolution reactions (HER) have drawn tremendous interest for the scalable and sustainable conversion of renewable electricity to clear hydrogen fuel. However, the sluggish kinetics of the water dissociation step severely restricts the high production of hydrogen in alkaline media. Tuning the electronic structure by doping is an effective method to boost water dissociation in alkaline solutions. In this study, N-doped CoO nanowire arrays (N-CoO) were designed and prepared using a simple method. X-ray diffraction (XRD), element mappings and X-ray photoelectron spectroscopy (XPS) demonstrated that N was successfully incorporated into the lattice of CoO. The XPS of Co 2p and O 1s suggested that the electronic structure of CoO was obviously modulated after the incorporation of N, which improved the adsorption and activation of water molecules. The energy barriers obtained from the Arrhenius relationship of the current density at different temperatures indicated that the N-CoO nanowire arrays accelerated the water dissociation in the HER process. As a result, the N-CoO nanowire arrays showed an excellent performance of HER in alkaline condition. At a current density of 10 mA cm−1, the N-CoO nanowire arrays needed only a 123 mV potential, which was much lower than that of CoO (285 mV). This simple design strategy provides some new inspiration to promote water dissociation for HER in alkaline solutions at the atomic level.


Nano Energy ◽  
2021 ◽  
Vol 80 ◽  
pp. 105544
Author(s):  
Palani Sabhapathy ◽  
Indrajit Shown ◽  
Amr Sabbah ◽  
Putikam Raghunath ◽  
Jeng-Lung Chen ◽  
...  

Author(s):  
H. A. Martinez-Rodriguez ◽  
J. F. Jurado ◽  
G. Herrera-Pérez ◽  
F. Espinoza-Magana ◽  
A. Reyes-Rojas

Sign in / Sign up

Export Citation Format

Share Document