interfacial chemistry
Recently Published Documents


TOTAL DOCUMENTS

491
(FIVE YEARS 113)

H-INDEX

43
(FIVE YEARS 7)

2022 ◽  
Vol 151 ◽  
pp. 106619
Author(s):  
M. Shishehbor ◽  
D. Sakaniwa ◽  
D. Stefaniuk ◽  
K.J. Krakowiak ◽  
M.J. Abdolhosseini Qomi

Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1493
Author(s):  
Soumya Mandal ◽  
Ashish Kumar Gupta ◽  
Braxton Hays Beavers ◽  
Vidit Singh ◽  
Jagdish Narayan ◽  
...  

Understanding the interfaces in heterostructures at an atomic scale is crucial in enabling the possibility to manipulate underlying functional properties in correlated materials. This work presents a detailed study on the atomic structures of heterogeneous interfaces in La0.7Sr0.3MnO3 (LSMO) film grown epitaxially on c-Al2O3 (0001) with a buffer layer of MgO. Using aberration-corrected scanning transmission electron microscopy, we detected nucleation of periodic misfit dislocations at the interfaces of the large misfit systems of LSMO/MgO and MgO/c-Al2O3 following the domain matching epitaxy paradigm. It was experimentally observed that the dislocations terminate with 4/5 lattice planes at the LSMO/MgO interface and with 12/13 lattice planes at the MgO/c-Al2O3 interface. This is consistent with theoretical predictions. Using the atomic-resolution image data analysis approach to generate atomic bond length maps, we investigated the atomic displacement in the LSMO/MgO and MgO/c-Al2O3 systems. Minimal presence of residual strain was shown at the respective interface due to strain relaxation following misfit dislocation formation. Further, based on electron energy-loss spectroscopy analysis, we confirmed an interfacial interdiffusion within two monolayers at both LSMO/MgO and MgO/c-Al2O3 interfaces. In essence, misfit dislocation configurations of the LSMO/MgO/c-Al2O3 system have been thoroughly investigated to understand atomic-scale insights on atomic structure and interfacial chemistry in these large misfit systems.


2021 ◽  
Vol MA2021-02 (3) ◽  
pp. 354-354
Author(s):  
Jiyu Cai ◽  
Ana Flavia Suzana ◽  
Jianming Bai ◽  
Feng Wang ◽  
Zonghai Chen

Small ◽  
2021 ◽  
pp. 2103557
Author(s):  
Dandan Wang ◽  
Lingjie Li ◽  
Zhonghua Zhang ◽  
Jing Liu ◽  
Xiaosong Guo ◽  
...  

2021 ◽  
Author(s):  
Hui Wang ◽  
Xiaohua Hu ◽  
Hongfei Wang

The electric field induced (EFI) bulk Chi(3) contribution to the second harmonic generation (SHG) signal from charged interfaces was discovered and applied to study the interfacial chemistry of various charged interfaces three decades ago. For both the buried fused silica/water interface and the exposed charged monolayer covered air/water interface, such bulk Chi(3) contribution was all attributed to the Chi(3) term of the polarized water molecules near the charged interfaces. The puzzling experimental observation of the more than one-order of magnitude difference of the EFISHG intensity between the fully charged silica/water interface and the charged molecular covered air/water interface was generally overlooked in the EFISHG literature. Nevertheless, this significant signal difference suggests additional source for the Chi(3) contribution at the fully charged silica/water interface other than the polarized water molecules as in the case of charged monolayer covered air/water interface. In this report, we re-examine the treatment of the Chi(3) mechanism at the charged silica/water interface by including the contributions from the bulk silica using proper boundary condition and image charge distributions for the change screening effects inside bulk silica phase. We show that the Chi(3) contribution from the bulk silica is in similar form as that of the aqueous bulk phase, and it is with more than one-order of magnitude and with opposite sign. The treatment reported here can be extended to other charged interfaces.


Author(s):  
Miguel Gonzalez ◽  
Krysten Minnici ◽  
Bailey Risteen ◽  
Lei Wang ◽  
Lisa M. Housel ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mingqiang Liu ◽  
Jia-Ao Wang ◽  
Wantana Klysubun ◽  
Gui-Gen Wang ◽  
Suchinda Sattayaporn ◽  
...  

AbstractMolybdenum disulfide, as an electronic highly-adjustable catalysts material, tuning its electronic structure is crucial to enhance its intrinsic hydrogen evolution reaction (HER) activity. Nevertheless, there are yet huge challenges to the understanding and regulation of the surface electronic structure of molybdenum disulfide-based catalysts. Here we address these challenges by tuning its electronic structure of phase modulation synergistic with interfacial chemistry and defects from phosphorus or sulfur implantation, and we then successfully design and synthesize electrocatalysts with the multi-heterojunction interfaces (e.g., 1T0.81-MoS2@Ni2P), demonstrating superior HER activities and good stabilities with a small overpotentials of 38.9 and 95 mV at 10 mA/cm2, a low Tafel slopes of 41 and 42 mV/dec in acidic as well as alkaline surroundings, outperforming commercial Pt/C catalyst and other reported Mo-based catalysts. Theoretical calculation verified that the incorporation of metallic-phase and intrinsic HER-active Ni-based materials into molybdenum disulfide could effectively regulate its electronic structure for making the bandgap narrower. Additionally, X-ray absorption spectroscopy indicate that reduced nickel possesses empty orbitals, which is helpful for additional H binding ability. All these factors can decrease Mo-H bond strength, greatly improving the HER catalytic activity of these materials.


2021 ◽  
Author(s):  
Noémi M. Nagy ◽  
József Kónya

2021 ◽  
Author(s):  
OZGE KAYNAN ◽  
LISA PEREZ ◽  
AMIR ASADI

Cellulose nanocrystal (CNCs) assisted carbon nanotubes (CNTs) and graphene nanoplatelets (GnP) were used to modify the interfacial region of carbon fiber (CF) and polymer matrix to strengthen the properties of carbon fiber-reinforced polymer (CFRP). Before transferring CNC-CNTs and CNC-GnPs on the CF surface by an immersion coating method, the nanomaterials were dispersed in DI water homogeneously by using probe sonication technique without additives. The results showed that the addition of CNC-CNT and CNC-GnP adjusted the interfacial chemistry of CFRP with the formation of polar groups. Furthermore, according to the single fiber fragmentation test (SFFT), the interfacial shear strength (IFSS) of CNC-GnP 6:1 and CNC-CNT 10:1 added CFRP increased to 55 MPa and 64 MPa due to modified interfacial chemistry by the incorporation of the nanomaterials. This processing technique also resulted in improvement in interlaminar shear strength (ILSS) in CFRPs from 35 MPa (neat composite) to 45 (CNC-GnP 6:1) MPa and 52 MPa (CNC-CNT 10:1).


Sign in / Sign up

Export Citation Format

Share Document