Novel Nanostructured Polymeric Composites of Polycaprolactone and Ultra-High Molecular Weight Polyethylene via a Supercritical-Fluid Route

2005 ◽  
Vol 17 (3) ◽  
pp. 364-367 ◽  
Author(s):  
A. J. Busby ◽  
J. Zhang ◽  
C. J. Roberts ◽  
E. Lester ◽  
S. M. Howdle
2015 ◽  
Vol 770 ◽  
pp. 87-92
Author(s):  
Sergey Panin ◽  
Lyudmila А. Kornienko ◽  
Nguyen Xuan Thuc ◽  
Larisa R. Ivanova ◽  
Mikhail A. Poltaranin ◽  
...  

In order to find out optimum filler to increase manufacturability (extrudability) of composites based on ultra-high molecular weight polyethylene (UHMWPE) matrix as well as to develop polymer-polymeric composites with improved tribological characteristics, the structure, mechanical properties and wear resistance of UHMWPE mixtures with elasticizing block-copolymer PA-b-LLDPE (UHMWPE + PA-b-LLDPE) was investigated under dry sliding friction. Applied aspect of the study is related to the selection of commercially available fillers being compatible with UHMWPE for manufacturing anti-frictional extrudable nanocomposites. It is shown that as compared with pure UHMWPE mechanical properties (ultimate strength, value of elongation at failure) do not vary substantially, but the wear rate under dry sliding friction of polymeric composites UHMWPE + n wt.% PA-b-LLDPE is reduced only when block copolymer weight fraction is less than ≤ 5 wt.%. By the polymeric filling an important technological characteristic - specific pressure of extrusion (that is proportional to melt flow index) might be decreased. Permolecular structure and wear track surfaces of polymer-polymer composites UHMWPE + n wt.% PA-b-LLDPE was examined and numerically characterized.


2020 ◽  
pp. 77-78

The use of ultra-high molecular weight polyethylene (UHMW PE) for the manufacture of various parts, in particular cuffs for hydraulic drives, is proposed. The properties and advantages of UHMW PE in comparison with other polyethylene materials are considered. Keywords ultra-high molecular weight polyethylene, hydraulic pump, hydraulic motor, hydraulic control valve, hydraulic oil, low temperature. [email protected]


2020 ◽  
Vol 92 (9) ◽  
pp. 1521-1536
Author(s):  
Clive Bucknall ◽  
Volker Altstädt ◽  
Dietmar Auhl ◽  
Paul Buckley ◽  
Dirk Dijkstra ◽  
...  

AbstractFatigue tests were carried out on compression mouldings supplied by a leading polymer manufacturer. They were made from three batches of ultra-high molecular weight polyethylene (UHMWPE) with weight-average relative molar masses, ${\overline{M}}_{\mathrm{W}}$, of about 0.6 × 106, 5 × 106 and 9 × 106. In 10 mm thick compact tension specimens, crack propagation was so erratic that it was impossible to follow standard procedure, where crack-tip stress intensity amplitude, ΔK, is raised incrementally, and the resulting crack propagation rate, da/dN, increases, following the Paris equation, where a is crack length and N is number of cycles. Instead, most of the tests were conducted at fixed high values of ΔK. Typically, da/dN then started at a high level, but decreased irregularly during the test. Micrographs of fracture surfaces showed that crack propagation was sporadic in these specimens. In one test, at ΔK = 2.3 MPa m0.5, there were crack-arrest marks at intervals Δa of about 2 μm, while the number of cycles between individual growth steps increased from 1 to more than 1000 and the fracture surface showed increasing evidence of plastic deformation. It is concluded that sporadic crack propagation was caused by energy-dissipating crazing, which was initiated close to the crack tip under plane strain conditions in mouldings that were not fully consolidated. By contrast, fatigue crack propagation in 4 mm thick specimens followed the Paris equation approximately. The results from all four reports on this project are reviewed, and the possibility of using fatigue testing as a quality assurance procedure for melt-processed UHMWPE is discussed.


Sign in / Sign up

Export Citation Format

Share Document