Implants for surgery. Ultra-high-molecular-weight polyethylene

2019 ◽  
2020 ◽  
pp. 77-78

The use of ultra-high molecular weight polyethylene (UHMW PE) for the manufacture of various parts, in particular cuffs for hydraulic drives, is proposed. The properties and advantages of UHMW PE in comparison with other polyethylene materials are considered. Keywords ultra-high molecular weight polyethylene, hydraulic pump, hydraulic motor, hydraulic control valve, hydraulic oil, low temperature. [email protected]


2020 ◽  
Vol 92 (9) ◽  
pp. 1521-1536
Author(s):  
Clive Bucknall ◽  
Volker Altstädt ◽  
Dietmar Auhl ◽  
Paul Buckley ◽  
Dirk Dijkstra ◽  
...  

AbstractFatigue tests were carried out on compression mouldings supplied by a leading polymer manufacturer. They were made from three batches of ultra-high molecular weight polyethylene (UHMWPE) with weight-average relative molar masses, ${\overline{M}}_{\mathrm{W}}$, of about 0.6 × 106, 5 × 106 and 9 × 106. In 10 mm thick compact tension specimens, crack propagation was so erratic that it was impossible to follow standard procedure, where crack-tip stress intensity amplitude, ΔK, is raised incrementally, and the resulting crack propagation rate, da/dN, increases, following the Paris equation, where a is crack length and N is number of cycles. Instead, most of the tests were conducted at fixed high values of ΔK. Typically, da/dN then started at a high level, but decreased irregularly during the test. Micrographs of fracture surfaces showed that crack propagation was sporadic in these specimens. In one test, at ΔK = 2.3 MPa m0.5, there were crack-arrest marks at intervals Δa of about 2 μm, while the number of cycles between individual growth steps increased from 1 to more than 1000 and the fracture surface showed increasing evidence of plastic deformation. It is concluded that sporadic crack propagation was caused by energy-dissipating crazing, which was initiated close to the crack tip under plane strain conditions in mouldings that were not fully consolidated. By contrast, fatigue crack propagation in 4 mm thick specimens followed the Paris equation approximately. The results from all four reports on this project are reviewed, and the possibility of using fatigue testing as a quality assurance procedure for melt-processed UHMWPE is discussed.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 404
Author(s):  
Nur Sharmila Sharip ◽  
Hidayah Ariffin ◽  
Tengku Arisyah Tengku Yasim-Anuar ◽  
Yoshito Andou ◽  
Yuki Shirosaki ◽  
...  

The major hurdle in melt-processing of ultra-high molecular weight polyethylene (UHMWPE) nanocomposite lies on the high melt viscosity of the UHMWPE, which may contribute to poor dispersion and distribution of the nanofiller. In this study, UHMWPE/cellulose nanofiber (UHMWPE/CNF) bionanocomposites were prepared by two different blending methods: (i) melt blending at 150 °C in a triple screw kneading extruder, and (ii) non-melt blending by ethanol mixing at room temperature. Results showed that melt-processing of UHMWPE without CNF (MB-UHMWPE/0) exhibited an increment in yield strength and Young’s modulus by 15% and 25%, respectively, compared to the Neat-UHMWPE. Tensile strength was however reduced by almost half. Ethanol mixed sample without CNF (EM-UHMWPE/0) on the other hand showed slight decrement in all mechanical properties tested. At 0.5% CNF inclusion, the mechanical properties of melt-blended bionanocomposites (MB-UHMWPE/0.5) were improved as compared to Neat-UHMWPE. It was also found that the yield strength, elongation at break, Young’s modulus, toughness and crystallinity of MB-UHMWPE/0.5 were higher by 28%, 61%, 47%, 45% and 11%, respectively, as compared to the ethanol mixing sample (EM-UHMWPE/0.5). Despite the reduction in tensile strength of MB-UHMWPE/0.5, the value i.e., 28.4 ± 1.0 MPa surpassed the minimum requirement of standard specification for fabricated UHMWPE in surgical implant application. Overall, melt-blending processing is more suitable for the preparation of UHMWPE/CNF bionanocomposites as exhibited by their characteristics presented herein. A better mechanical interlocking between UHMWPE and CNF at high temperature mixing with kneading was evident through FE-SEM observation, explains the higher mechanical properties of MB-UHMWPE/0.5 as compared to EM-UHMWPE/0.5.


Sign in / Sign up

Export Citation Format

Share Document