magnetic film
Recently Published Documents


TOTAL DOCUMENTS

582
(FIVE YEARS 52)

H-INDEX

31
(FIVE YEARS 2)

2021 ◽  
Vol 13 (4) ◽  
pp. 471-478
Author(s):  
Karen Y. Constantinian ◽  
◽  
Gennady A. Ovsyannikov ◽  
Anton V. Shadrin ◽  
Yulii V. Kislinski ◽  
...  

Electron transport processes in oxide superconducting heterostructures with epitaxially grown magnetic thin-film interlayers, in which the interaction of superconducting correlations and magnetic ordering occurs due to superconducting and magnetic proximity effects, have been studied experimentally. Hybrid mesa-heterostructures were prepared from thin-film bottom cuprate superconductor (S), magnetic (M) interlayer made of manganite or an antiferromagnetic cuprate, and the upper electrode made from an ordinary superconductor. When the cuprate antiferromagnetic material was replaced by a ferromagnetic manganite interlayer, the superconducting current was suppressed, although the thin magnetic film was several times thinner, 5 nm, and the temperature was lowered to 0.3 K. At low temperatures dependences of differential resistance vs. voltage for mesa-heterostructures with manganite interlayer featured mini-gap low-energy states.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8386
Author(s):  
Lars Thormählen ◽  
Dennis Seidler ◽  
Viktor Schell ◽  
Frans Munnik ◽  
Jeffrey McCord ◽  
...  

For the best possible limit of detection of any thin film-based magnetic field sensor, the functional magnetic film properties are an essential parameter. For sensors based on magnetostrictive layers, the chemical composition, morphology and intrinsic stresses of the layer have to be controlled during film deposition to further control magnetic influences such as crystallographic effects, pinning effects and stress anisotropies. For the application in magnetic surface acoustic wave sensors, the magnetostrictive layers are deposited on rotated piezoelectric single crystal substrates. The thermomechanical properties of quartz can lead to undesirable layer stresses and associated magnetic anisotropies if the temperature increases during deposition. With this in mind, we compare amorphous, magnetostrictive FeCoSiB films prepared by RF and DC magnetron sputter deposition. The chemical, structural and magnetic properties determined by elastic recoil detection, X-ray diffraction, and magneto-optical magnetometry and magnetic domain analysis are correlated with the resulting surface acoustic wave sensor properties such as phase noise level and limit of detection. To confirm the material properties, SAW sensors with magnetostrictive layers deposited with RF and DC deposition have been prepared and characterized, showing comparable detection limits below 200 pT/Hz1/2 at 10 Hz. The main benefit of the DC deposition is achieving higher deposition rates while maintaining similar low substrate temperatures.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Polina E. Zimnyakova ◽  
Daria O. Ignatyeva ◽  
Dolendra Karki ◽  
Andrey A. Voronov ◽  
Alexander N. Shaposhnikov ◽  
...  

Abstract We demonstrate a novel all-dielectric magnetophotonic structure that consists of two-dimensional arrays of bismuth substituted iron-garnet nanocylinders supporting both localized (Fabry–Perot-like) and lattice (guided-like) optical modes. Simultaneous excitation of the two kinds of modes provides a significant enhancement of the Faraday effect by 3 times and transverse magneto-optical Kerr effect by an order of magnitude compared to the smooth magnetic film of the same effective thickness. Both magneto-optical effects are boosted in wide spectral and angular ranges making the nanocylinder array magnetic dielectric structures promising for applications with short and tightly focused laser pulses.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1883
Author(s):  
Yan Wu ◽  
Bin Ji ◽  
Wei Wang

Soft magnetic materials are important functional materials in the electrical engineering, radio, and high-tech fields, but thin and brittle flakes present challenges to the manufacturing industry. In this study, the effect and mechanism of saccharin sodium in reducing the internal stress of Fe-Ni magnetic films were analyzed. The effects of the pH value, temperature, and the concentration of saccharin sodium on the deposition process of Fe-Ni alloys were investigated. The polarization curve of the Fe-Ni alloy deposition process was measured by using a multifunctional electrochemical workstation, and the morphology and crystal structure were measured by a scanning electron microscope (SEM) and X-ray diffraction (XRD). The results show that saccharin sodium significantly reduced the stress of the iron-nickel magnetic film; the mechanism through which the internal stress was reduced is analyzed in this paper. Briefly, the Fe2+ and the amino group of saccharin sodium synthesized a metal complex with positive charge on the surface of the electrode, which prevented the hydrogen ions from approaching the cathode and increased the discharge activation energy of the hydrogen ion, which reduced the hydrogen evolution and improved the internal stress of the coating. This research will help to solve the challenges of producing magnetic film, and promotes the application of new stress-reducing agents.


2021 ◽  
pp. 131135
Author(s):  
Yingjian Guo ◽  
Minggang Zhu ◽  
Chenyao Zhu ◽  
Zhang Lele ◽  
Yachao Sun ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Haitao Wu ◽  
Xuchong Hu ◽  
Keyu Jing ◽  
X. R. Wang

AbstractSize is a fundamental quantity of magnetic skyrmions. A magnetic skyrmion can be a local circular object and in an isolated form. A skyrmion can also coexist with a group of its siblings in a condensed phase. Each skyrmion in a condensed phase takes a stripe shape at low skyrmion density and a circular shape at high skyrmion density. Skyrmions at high density form a skyrmion crystal (SkX). So far, skyrmion size in an SkX has not been seriously studied. Here, by using a generic chiral magnetic film, it is found that skyrmion size in an SkX has a different parameter dependence as those for isolated skyrmions and stripes. A size formula and a good spin profile for skyrmions in SkXs are proposed. These findings have important implications in searching for stable smaller skyrmions at the room temperature.


Author(s):  
V.S. Vlasov ◽  

The subject of investigation in this work is the excitation of magnetization precession in magnetic film on the surface of which is formed the temperature relief which is formed by interference picture formatted by preliminary divided ray from femtosecond laser. It is mentioned the discovered in experiment the dependence of excitation efficiency from the orientation of magnetic field applied in the plane of film. The main aim of this work is the theoretical interpretation of observed orientation dependence. The realized in experiment scheme “pump-probe” is described. The whole geometry of task is proposed. This geometry includes in oneself the magnetic film with formed in its surface interference picture and applied in the plane of film the constant field. It is shown that by the thermal expansion in the film the elastic waves two types are excited; the surface Rayleigh waves and leaky longitudinal waves. The projections of wave-vectors of propagating waves to plane of film are normal to the strips of interference picture. The orientation of field may change from to longitudinal to transverse from the same strips. The components of deformation tensor of Rayleigh and leaky waves are determined. The precession of magnetization in the coordinate system connected with field is investigated. By using the apparatus of crossing matrixes it is found the components of deformation tensor are determined. In the frame of linear approach in this system the task about excitation of magnetization precession by elastic deformations by Rayleigh and leaky waves is solved. The dynamical component of magnetization precession which ensures the light polarization rotation which passes along the normal to the plane of film is found. It is shown that the angle of rotation is straight proportional to the tensor deformation components with the summarization with the resonance character of precession magnetization dependence from the value of magnetic field. The dependence of polarization rotation from orientation of field which is applied in the plane of film is found. It is shown that by the orientation of field along and across the interference stripes the rotation of polarization plane is absent. Between these extreme orientations the dependence has appearance as two maxima divided by deep minimum. The received results are compared with data of experiment. It is found the quality and in some cases quantity correlation. The recommendations for further development of work are proposed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Munusamy Kuppan ◽  
Daichi Yamamoto ◽  
Genta Egawa ◽  
Sivaperuman Kalainathan ◽  
Satoru Yoshimura

Abstract(Bi1−xLax)(Fe,Co)O3 multiferroic magnetic film were fabricated using pulsed DC (direct current) sputtering technique and demonstrated magnetization reversal by applied electric field. The fabricated (Bi0.41La0.59)(Fe0.75Co0.25)O3 films exhibited hysteresis curves of both ferromagnetic and ferroelectric behavior. The saturated magnetization (Ms) of the multiferroic film was about 70 emu/cm3. The squareness (S) (= remanent magnetization (Mr)/Ms) and coercivity (Hc) of perpendicular to film plane are 0.64 and 4.2 kOe which are larger compared with films in parallel to film plane of 0.5 and 2.5 kOe. The electric and magnetic domain structures of the (Bi0.41La0.59)(Fe0.75Co0.25)O3 film analyzed by electric force microscopy (EFM) and magnetic force microscopy (MFM) were clearly induced with submicron scale by applying a local electric field. This magnetization reversal indicates the future realization of high performance magnetic device with low power consumption.


Author(s):  
Zhi Li ◽  
Kun Zhang ◽  
Weibin Chen ◽  
Zitong Zhou ◽  
Zhiqiang Cao ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document