High-Power Density Piezoelectric Energy Harvesting Using Radially Strained Ultrathin Trigonal Tellurium Nanowire Assembly

2013 ◽  
Vol 25 (21) ◽  
pp. 2920-2925 ◽  
Author(s):  
Tae Il Lee ◽  
Sangmin Lee ◽  
Eungkyu Lee ◽  
Sungwoo Sohn ◽  
Yean Lee ◽  
...  
2019 ◽  
Vol 11 (43) ◽  
pp. 40107-40113 ◽  
Author(s):  
Amin Nozariasbmarz ◽  
Ravi Anant Kishore ◽  
Bed Poudel ◽  
Udara Saparamadu ◽  
Wenjie Li ◽  
...  

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Tsung-Hsing Hsu ◽  
Supone Manakasettharn ◽  
J. Ashley Taylor ◽  
Tom Krupenkin

2015 ◽  
Vol 6 (6) ◽  
pp. 676-681
Author(s):  
Andrius Čeponis ◽  
Dalius Mažeika

The article gives an overview of the problems and solutions related to energy harvesting systems used for power supply of low power electronics systems. Power density is the main parameter describing the efficiency of energy harvesting systems. Piezoelectric energy harvesting systems demonstrate a high value of power density, and therefore the article presents an overview of piezoelectric energy harvesting systems and their components. Also, a summary of the terms that affect the efficiency of piezoelectric energy harvesting systems has been presented. Straipsnyje apžvelgiamos problemos ir sprendimai, susiję su elektrinės energijos tiekimu mažos galios elektronikos sistemoms, taikant energijos surinkimo iš aplinkos technologijas. Vienas iš pagrindinių energijos surinkimo sistemas apibūdinančių parametrų yra galios tankis. Pjezoelektrinė energijos surinkimo technologija pasižymi vienu iš didžiausių galios tankiu, todėl straipsnyje išsamiai nagrinėjami pjezoelektriniai kinetinės energijos keitikliai, apžvelgiamos keitiklių konstrukcijos, jų sudedamosios dalys, išskiriamos technologinės sąlygos, darančios įtaką keitiklių efektyvumui.


2017 ◽  
Vol 29 (6) ◽  
pp. 1206-1215 ◽  
Author(s):  
Donghuan Liu ◽  
Mohammed Al-Haik ◽  
Mohamed Zakaria ◽  
Muhammad R Hajj

Energy harvesting from an L-shaped structure, formed by two beams and corner and end masses, is investigated with the objective of expanding the bandwidth of the frequency range over which energy can be harvested. The structure is excited in a direction that yields the most uniform strain distribution along its main beam. The length of the auxiliary beam is varied to determine its effect on the level and breadth of the frequency range over which energy can be harvested. Results from experiments having different geometries are presented and discussed. It is determined that the frequency range over which energy can be harvested from such structures is much larger than levels harvested when using a cantilever beam. The experiments also show that L-shaped structures harvest more power when the length of the auxiliary beam is increased. On the contrary, the power density of the L-shaped structure is much smaller than that of the cantilever beam. The ability to control the bandwidth of frequency over which energy is harvested through proper adjustment of beam lengths is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document