scholarly journals A New Microengineered Platform for 4D Tracking of Single Cells in a Stem‐Cell‐Based In Vitro Morphogenesis Model

2020 ◽  
Vol 32 (24) ◽  
pp. 1907966 ◽  
Author(s):  
Pinak Samal ◽  
Philipp Maurer ◽  
Clemens Blitterswijk ◽  
Roman Truckenmüller ◽  
Stefan Giselbrecht
2020 ◽  
Vol 32 (24) ◽  
pp. 2070182
Author(s):  
Pinak Samal ◽  
Philipp Maurer ◽  
Clemens Blitterswijk ◽  
Roman Truckenmüller ◽  
Stefan Giselbrecht

Blood ◽  
1992 ◽  
Vol 80 (12) ◽  
pp. 3044-3050 ◽  
Author(s):  
S Okada ◽  
H Nakauchi ◽  
K Nagayoshi ◽  
S Nishikawa ◽  
Y Miura ◽  
...  

c-kit is expressed on hematopoietic stem cells and progenitor cells, but not on lymphohematopoietic differentiated cells. Lineage marker- negative, c-kit-positive (Lin-c-kit+) bone marrow cells were fractionated by means of Ly6A/E or Sca-1 expression. Lin-c-kit+Sca-1+ cells, which consisted of 0.08% of bone marrow nucleated cells, did not contain day-8 colony-forming units-spleen (CFU-S), but 80% were day-12 CFU-S. One hundred cells rescued the lethally irradiated mice and reconstituted hematopoiesis. On the other hand, 2 x 10(3) of Lin-c- kit+Sca-1- cells formed 20 day-8 and 11 day-12 spleen colonies, but they could not rescue the lethally irradiated mice. These data indicate that Lin-c-kit+Sca-1+ cells are primitive hematopoietic stem cells and that Sca-1-cells do not contain stem cells that reconstitute hematopoiesis. Lin-c-kit+Sca-1+ cells formed no colonies in the presence of stem cell factor (SCF) or interleukin-6 (IL-6), and only 10% of them formed colonies in the presence of IL-3. However, approximately 50% of them formed large colonies in the presence of IL-3, IL-6, and SCF. Moreover, when single cells were deposited into culture medium by fluorescence-activated cell sorter clone sorting system, 40% of them proliferated on a stromal cell line (PA-6) and proliferated for more than 2 weeks. In contrast, 15% of the Lin-c- kit+Sca-1-cells formed colonies in the presence of IL-3, but no synergistic effects were observed in combination with SCF plus IL-6 and/or IL-3. Approximately 10% proliferated on PA-6, but most of them degenerated within 2 weeks. The population ratio of c-kit+Sca-1+ to c-kit+Sca-1- increased 2 and 4 days after exposure to 5-fluorouracil (5-FU). These results are consistent with the relative enrichment of highly proliferative colony-forming cells by 5-FU. These data show that, although c-kit is found both on the primitive hematopoietic stem cells and progenitors, Sca-1+ cells are more primitive and respond better than Sca-1- cells to a combination of hematopoietic factors, including SCF and stromal cells.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1720-1720
Author(s):  
Brad Dykstra ◽  
David Kent ◽  
Lindsay McCaffrey ◽  
Kristin Lyons ◽  
Merete Kristiansen ◽  
...  

Abstract Assessments of hematopoietic stem cell (HSC) repopulating activity in vivo have historically relied on calculated average longterm (12–16 wk) progeny outputs using non-purified transplants, thereby precluding definitive clonal assignments of donor-derived cells. Viral marking circumvents this problem, but has not been used for large scale surveys. Heterogeneity observed in the repopulation patterns has generally been inferred to reflect stochastic processes. We now report the in vivo repopulation kinetics of 89 individual longterm repopulating cells (LTRCs) before (n=49) and after (n=40) 4 days of clonal growth in vitro. LTRCs were defined here as cells whose WBC progeny could be detected at levels of ≥1% for at least 16 wk in sublethally irradiated Ly5-congenic W41/W41 hosts. Recipients were transplanted with either freshly isolated, single lin−Rho−SP LTRCs or 4-day clones generated from similar cells in serum-free cultures (+ 300 ng/ml SF, 20 ng/ml IL-11 & 1ng/ml Flt3-L). 4, 8, 12, 16, and 24 wk post-transplant, blood samples were stained for donor-derived B, T, and myeloid cells using a procedure that identifies donor/recipient doublets and Ly6g/Mac1low cells (which have features of lymphoid rather than myeloid WBCs) to exclude false-positive myeloid events. Four distinct patterns of repopulation were revealed. Type 1 showed a delayed production of predominantly myeloid WBCs (low or undetectable before 12 wk) that increased progressively (reaching 0.4–15% of all WBCs by 16 wk). Type 2 showed a robust multilineage repopulation that remained stable or increased over time (6–84% of all WBCs at 16 wk). Type 3 also showed an initially robust pattern of multilineage repopulation (peak numbers of WBCs at 8–12 wk and 1–51% at 16 wk), but the contribution of donor-derived myeloid cells was transient (<0.5% by 16 wk). Type 4 showed a lymphoid-restricted pattern (myeloid contribution <0.5% at all time points), with repopulation levels peaking at 8 wk and decreasing thereafter (1–22% at 16 wk). Persisting granulopoiesis, indicated by a high proportion of donor-derived cells in the Ly6g/Mac1+SSChi population at 16–24 wk, clearly distinguished the type 1 and 2 patterns from types 3 and 4 which showed near or complete cessation of donor-derived granulopoiesis beyond 12 wk. Preliminary secondary transplant experiments show that donor-derived LTRCs (with and without longterm granulopoietic activity) were exclusively generated in primary recipients with type 1 and 2 repopulation patterns. Amongst the freshly isolated LTRCs, 18% (9/49) were type 1, 41% (20/49) were type 2, 22% (11/49) were type 3, and 18% (9/49) were type 4. In contrast, 4-day clones derived from cells of the same phenotype and containing LTRC activity showed a marked decrease in type 1 and type 2 activity with a corresponding increase in type 3 and type 4 activity: type 1 = 5% (2/41), type 2 = 18% (7/40), type 3 = 28% (11/40) and type 4 = 50% (20/40). Collectively, these data identify a new hierarchy of four biologically discrete states within the compartment of cells currently defined as LTRCs. Proliferation of LTRCs either in vitro or in vivo appears to induce an irreversible transition from one state to another (from Type 1 to 2 to 3 to 4), suggesting the existence of intrinsic molecular correlates for each of these states and specific mechanisms that underlie their sequential appearance.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Murilo S. Amaral ◽  
Lucas F. Maciel ◽  
Gilbert O. Silveira ◽  
Giovanna G. O. Olberg ◽  
João V. P. Leite ◽  
...  

AbstractSchistosoma mansoni is a flatworm that causes schistosomiasis, a neglected tropical disease that affects more than 200 million people worldwide. There is only one drug indicated for treatment, praziquantel, which may lead to parasite resistance emergence. The ribonucleoside analogue 5-azacytidine (5-AzaC) is an epigenetic drug that inhibits S. mansoni oviposition and ovarian development through interference with parasite transcription, translation and stem cell activities. Therefore, studying the downstream pathways affected by 5-AzaC in S. mansoni may contribute to the discovery of new drug targets. Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides with low or no protein coding potential that have been involved in reproduction, stem cell maintenance and drug resistance. We have recently published a catalog of lncRNAs expressed in S. mansoni life-cycle stages, tissues and single cells. However, it remains largely unknown if lncRNAs are responsive to epigenetic drugs in parasites. Here, we show by RNA-Seq re-analyses that hundreds of lncRNAs are differentially expressed after in vitro 5-AzaC treatment of S. mansoni females, including intergenic, antisense and sense lncRNAs. Many of these lncRNAs belong to co-expression network modules related to male metabolism and are also differentially expressed in unpaired compared with paired females and ovaries. Half of these lncRNAs possess histone marks at their genomic loci, indicating regulation by histone modification. Among a selected set of 8 lncRNAs, half of them were validated by RT-qPCR as differentially expressed in females, and some of them also in males. Interestingly, these lncRNAs are also expressed in other life-cycle stages. This study demonstrates that many lncRNAs potentially involved with S. mansoni reproductive biology are modulated by 5-AzaC and sheds light on the relevance of exploring lncRNAs in response to drug treatments in parasites.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 1034
Author(s):  
Claudia Morganti ◽  
Massimo Bonora ◽  
Saverio Marchi ◽  
Letizia Ferroni ◽  
Chiara Gardin ◽  
...  

Citrate, generated in the mitochondria, is a key metabolite that might link metabolism with signaling, chromatin structure and transcription to orchestrate mesenchymal stem cells (MSCs) fate determination. Based on a detailed morphological analysis of 3D reconstruction of mitochondria and nuclei in single cells, we identified contact sites between these organelles that drastically increase in volume and number during the early stage of mesenchymal stem cell differentiation. These contact sites create a microdomain that facilitates exchange of signals from mitochondria to the nucleus. Interestingly, we found that the citrate derived from mitochondria is necessary for osteogenic lineage determination. Indeed, inhibition of the citrate transporter system dramatically affected osteogenesis, reduced citrate levels that could be converted in α-ketoglutarate, and consequently affected epigenetic marker H3K9me3 associated with the osteogenesis differentiation process. These findings highlight that mitochondrial metabolites play key regulatory roles in the MSCs differentiation process. Further in-depth investigation is needed to provide novel therapeutic strategies in the field of regenerative medicine.


Blood ◽  
1992 ◽  
Vol 80 (12) ◽  
pp. 3044-3050 ◽  
Author(s):  
S Okada ◽  
H Nakauchi ◽  
K Nagayoshi ◽  
S Nishikawa ◽  
Y Miura ◽  
...  

Abstract c-kit is expressed on hematopoietic stem cells and progenitor cells, but not on lymphohematopoietic differentiated cells. Lineage marker- negative, c-kit-positive (Lin-c-kit+) bone marrow cells were fractionated by means of Ly6A/E or Sca-1 expression. Lin-c-kit+Sca-1+ cells, which consisted of 0.08% of bone marrow nucleated cells, did not contain day-8 colony-forming units-spleen (CFU-S), but 80% were day-12 CFU-S. One hundred cells rescued the lethally irradiated mice and reconstituted hematopoiesis. On the other hand, 2 x 10(3) of Lin-c- kit+Sca-1- cells formed 20 day-8 and 11 day-12 spleen colonies, but they could not rescue the lethally irradiated mice. These data indicate that Lin-c-kit+Sca-1+ cells are primitive hematopoietic stem cells and that Sca-1-cells do not contain stem cells that reconstitute hematopoiesis. Lin-c-kit+Sca-1+ cells formed no colonies in the presence of stem cell factor (SCF) or interleukin-6 (IL-6), and only 10% of them formed colonies in the presence of IL-3. However, approximately 50% of them formed large colonies in the presence of IL-3, IL-6, and SCF. Moreover, when single cells were deposited into culture medium by fluorescence-activated cell sorter clone sorting system, 40% of them proliferated on a stromal cell line (PA-6) and proliferated for more than 2 weeks. In contrast, 15% of the Lin-c- kit+Sca-1-cells formed colonies in the presence of IL-3, but no synergistic effects were observed in combination with SCF plus IL-6 and/or IL-3. Approximately 10% proliferated on PA-6, but most of them degenerated within 2 weeks. The population ratio of c-kit+Sca-1+ to c-kit+Sca-1- increased 2 and 4 days after exposure to 5-fluorouracil (5-FU). These results are consistent with the relative enrichment of highly proliferative colony-forming cells by 5-FU. These data show that, although c-kit is found both on the primitive hematopoietic stem cells and progenitors, Sca-1+ cells are more primitive and respond better than Sca-1- cells to a combination of hematopoietic factors, including SCF and stromal cells.


2018 ◽  
Author(s):  
Fantuzzi Federica ◽  
Toivonen Sanna ◽  
Schiavo Andrea Alex ◽  
Pachera Nathalie ◽  
Rajaei Bahareh ◽  
...  

2008 ◽  
Author(s):  
Helen M. Blau ◽  
Matthias P. Lutolf

Sign in / Sign up

Export Citation Format

Share Document