scholarly journals Single‐Cell Tracking: A New Microengineered Platform for 4D Tracking of Single Cells in a Stem‐Cell‐Based In Vitro Morphogenesis Model (Adv. Mater. 24/2020)

2020 ◽  
Vol 32 (24) ◽  
pp. 2070182
Author(s):  
Pinak Samal ◽  
Philipp Maurer ◽  
Clemens Blitterswijk ◽  
Roman Truckenmüller ◽  
Stefan Giselbrecht
2020 ◽  
Vol 32 (24) ◽  
pp. 1907966 ◽  
Author(s):  
Pinak Samal ◽  
Philipp Maurer ◽  
Clemens Blitterswijk ◽  
Roman Truckenmüller ◽  
Stefan Giselbrecht

Methods ◽  
2018 ◽  
Vol 133 ◽  
pp. 81-90 ◽  
Author(s):  
Katja M. Piltti ◽  
Brian J. Cummings ◽  
Krystal Carta ◽  
Ayla Manughian-Peter ◽  
Colleen L. Worne ◽  
...  

Author(s):  
Harrison Specht ◽  
Nikolai Slavov

Many pressing medical challenges - such as diagnosing disease, enhancing directed stem cell differentiation, and classifying cancers - have long been hindered by limitations in our ability to quantify proteins in single cells. Mass-spectrometry (MS) is poised to transcend these limitations by developing powerful methods to routinely quantify thousands of proteins and proteoforms across many thousands of single cells. We outline specific technological developments and ideas that can increase the sensitivity and throughput of single cell MS by orders of magnitude and usher in this new age. These advances will transform medicine and ultimately contribute to understanding biological systems on an entirely new level.


Author(s):  
Kenneth H. Hu ◽  
John P. Eichorst ◽  
Chris S. McGinnis ◽  
David M. Patterson ◽  
Eric D. Chow ◽  
...  

ABSTRACTSpatial transcriptomics seeks to integrate single-cell transcriptomic data within the 3-dimensional space of multicellular biology. Current methods use glass substrates pre-seeded with matrices of barcodes or fluorescence hybridization of a limited number of probes. We developed an alternative approach, called ‘ZipSeq’, that uses patterned illumination and photocaged oligonucleotides to serially print barcodes (Zipcodes) onto live cells within intact tissues, in real-time and with on-the-fly selection of patterns. Using ZipSeq, we mapped gene expression in three settings: in-vitro wound healing, live lymph node sections and in a live tumor microenvironment (TME). In all cases, we discovered new gene expression patterns associated with histological structures. In the TME, this demonstrated a trajectory of myeloid and T cell differentiation, from periphery inward. A variation of ZipSeq efficiently scales to the level of single cells, providing a pathway for complete mapping of live tissues, subsequent to real-time imaging or perturbation.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
John Terrovitis ◽  
Keng Fai Kwok ◽  
Riikka Läutamaki ◽  
James M Engles ◽  
Andreas S Barth ◽  
...  

Background. Stem cells offer the promise of cardiac repair. Stem cell labeling is a prerequisite to tracking cell fate in vivo . Aim. To develop a reporter gene that permits in vivo stem cell labeling. We examined the sodium-iodide symporter (NIS), a protein that is not expressed in the heart, but promotes cellular uptake of 99m Tc or 124 I, thus permitting cell tracking by SPECT or PET imaging, respectively. Methods. The human NIS gene ( h NIS) was expressed in rat cardiac derived stem cells (rCDCs) using lentivirus driven by the CAG or CMV promoter. NIS function in transduced cells was confirmed by in vitro 99m Tc uptake. Eleven rats were injected with 1 or 2 million rCDCs intramyocardially immediately after LAD ligation; 6 with CMV-NIS and 5 with CAG-NIS cells. Dual isotope SPECT imaging was performed on a small animal SPECT/CT system, using 99m Tc for cell detection and 201 Tl for myocardial delineation, 24 hrs after cell injection. PET was performed on a small animal PET scanner using 124 I for cell tracking and 13 NH 3 for myocardial delineation, 48hrs after cell injection. Contrast Ratio (CR) was defined as [(signal in the cells)-(signal in blood pool)]/signal in blood pool. High resolution ex vivo SPECT scans of explanted hearts (n=3) were obtained to confirm that in vivo signal was derived from the cell injection site. The presence of h NIS mRNA was confirmed in injected hearts after animal sacrifice (n=2), by real-time RT-PCR. Results. NIS expression in rCDCs did not affect cell viability/proliferation (p=0.718, ctr vs NIS). In vitro 99m Tc uptake was 6.0±0.9% vs 0.07±0.05, without and with perchlorate (specific NIS blocker), respectively. NIS-transduced rCDCs were easily visualized as spots of 99m Tc or 124 I uptake within a perfusion deficit in the SPECT and PET images. CR was considerably higher when cells were transduced by the CMV-NIS virus in comparison to the CAG-NIS virus (70±40% vs 28±29%, p=0.085). Ex vivo small animal SPECT imaging confirmed that in vivo 99m Tc signals were localized to the injection sites. PCR confirmed the presence of h NIS mRNA in injected hearts. Conclusion. NIS expression allows non invasive in vivo stem cell tracking in the myocardium, using both SPECT and PET. This reporter gene has great potential for translation in future clinical applications.


2020 ◽  
Vol 117 (31) ◽  
pp. 18412-18423 ◽  
Author(s):  
Chia-Chen Hsu ◽  
Jiabao Xu ◽  
Bas Brinkhof ◽  
Hui Wang ◽  
Zhanfeng Cui ◽  
...  

Stem cells with the capability to self-renew and differentiate into multiple cell derivatives provide platforms for drug screening and promising treatment options for a wide variety of neural diseases. Nevertheless, clinical applications of stem cells have been hindered partly owing to a lack of standardized techniques to characterize cell molecular profiles noninvasively and comprehensively. Here, we demonstrate that a label-free and noninvasive single-cell Raman microspectroscopy (SCRM) platform was able to identify neural cell lineages derived from clinically relevant human induced pluripotent stem cells (hiPSCs). By analyzing the intrinsic biochemical profiles of single cells at a large scale (8,774 Raman spectra in total), iPSCs and iPSC-derived neural cells can be distinguished by their intrinsic phenotypic Raman spectra. We identified a Raman biomarker from glycogen to distinguish iPSCs from their neural derivatives, and the result was verified by the conventional glycogen detection assays. Further analysis with a machine learning classification model, utilizing t-distributed stochastic neighbor embedding (t-SNE)-enhanced ensemble stacking, clearly categorized hiPSCs in different developmental stages with 97.5% accuracy. The present study demonstrates the capability of the SCRM-based platform to monitor cell development using high content screening with a noninvasive and label-free approach. This platform as well as our identified biomarker could be extensible to other cell types and can potentially have a high impact on neural stem cell therapy.


2019 ◽  
Vol 15 (11) ◽  
pp. 2179-2192
Author(s):  
Yuanyuan Xie ◽  
Wei Liu ◽  
Bing Zhang ◽  
Bin Wang ◽  
Liudi Wang ◽  
...  

Until now, there is no effective method for tracking transplanted stem cells in human. Ruicun (RC) is a new ultra-small SPIONs agent that has been approved by China Food and Drug Administration for iron supplementation but not as a stem cell tracer in clinic. In this study, we demonstrated magnetic resonance imaging-based tracking of RC-labeled human umbilical cord derived mesenchymal stem cells (MSCs) transplanted to locally injured site of rat spinal cords. We then comprehensively evaluated the safety and quality of the RC-labeled MSCs under good manufacturing practicecompliant conditions, to investigate the feasibility of SPIONs for inner tracking in stem cell-based therapy (SCT). Our results showed that RC labeling at appropriate dose (200 μg/mL) did not have evident impacts on characteristics of MSCs in vitro, demonstrating safety, non-carcinogenesis, and non-tissue inflammation in vivo. The systematic assessments of intracellular biocompatibility indicated that the RC labeled MSCs met with mandatory requirements and standards for law-regulation systems regarding SCT, facilitating translation of cell-tracking technologies to clinical trials.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Vivekananda Sarangi ◽  
Alexandre Jourdon ◽  
Taejeong Bae ◽  
Arijit Panda ◽  
Flora Vaccarino ◽  
...  

Abstract Background The study of mosaic mutation is important since it has been linked to cancer and various disorders. Single cell sequencing has become a powerful tool to study the genome of individual cells for the detection of mosaic mutations. The amount of DNA in a single cell needs to be amplified before sequencing and multiple displacement amplification (MDA) is widely used owing to its low error rate and long fragment length of amplified DNA. However, the phi29 polymerase used in MDA is sensitive to template fragmentation and presence of sites with DNA damage that can lead to biases such as allelic imbalance, uneven coverage and over representation of C to T mutations. It is therefore important to select cells with uniform amplification to decrease false positives and increase sensitivity for mosaic mutation detection. Results We propose a method, Scellector (single cell selector), which uses haplotype information to detect amplification quality in shallow coverage sequencing data. We tested Scellector on single human neuronal cells, obtained in vitro and amplified by MDA. Qualities were estimated from shallow sequencing with coverage as low as 0.3× per cell and then confirmed using 30× deep coverage sequencing. The high concordance between shallow and high coverage data validated the method. Conclusion Scellector can potentially be used to rank amplifications obtained from single cell platforms relying on a MDA-like amplification step, such as Chromium Single Cell profiling solution.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4090-4090
Author(s):  
Alison R Moliterno ◽  
Donna Marie Williams ◽  
Jonathan M. Gerber ◽  
Michael A McDevitt ◽  
Ophelia Rogers ◽  
...  

Abstract Introduction: Essential thrombocytosis (ET), polycythemia vera (PV), and myelofibrosis (MF; post ETMF, post PVMF and primary MF) share the JAK2V617F mutation, but differ with regard to clinical phenotype, rate of disease progression, and risk of transformation. Variation in the JAK2V617F neutrophil allele burden does not account for these observed differences in clinical behavior or natural history. We therefore investigated the JAK2V617F burden and JAK2 genotype composition in the hematopoietic stem cell (HSC) population of MPN patients. Methods: We studied 47 JAK2V617F-positive MPN patients during 51 distinct disease phases. Circulating CD34+ cells were flow-sorted based on the stem cell markers CD34, CD38 and aldehyde dehydrogenase (ALDH). CD34+ CD38- ALDH+ HSC were sorted into 96 well plates and single cell JAK2 genotypes (average 40 single cells genotyped/patient with >1000 total single cells genotyped) were obtained using a nested PCR assay. Additional genomic lesions and chromosomal copy number variation were investigated in the sorted, single cell fractions in informative patients by FISH or multiplex single cell PCR. Distribution of JAK2V617F stem cell genotypes were correlated with disease phenotype, neutrophil JAK2V617F allele burden, splenomegaly, white cell count, chemotherapy requirement and disease evolution. Results: In all MPN cases, regardless of disease class, the JAK2V617F mutation was detected in the CD34+ CD38- ALDH+ fraction - the same population in which normal HSC reside. All ET and MF patients, and the majority of PV patients, had three JAK2 genotypes coexisting in their respective HSC populations. ET was characterized by a high percentage of JAK2WT stem cells (>75%) despite the concomitant presence of JAK2V617F homozygous clones and disease durations >15 years. Importantly, in the ET patients where JAK2WT clones fell to less than 50%, a PV phase followed. MF was characterized by a relatively low percentage of JAK2WT stem cells (median 24%), regardless of disease duration. PV had the most variable JAK2 genotypes with a wide range of JAK2WT stem cells (4%-92%) and a wide range of JAK2V617F homozygous stem cells (2-100%), and in 5/16 PV cases, only JAK2WT and JAK2V617F homozygous stem cells were identified. PV patients with JAK2V617F homozygous clones comprising more than 50% of their stem cells, regardless of disease duration, had higher white cell counts, higher neutrophil allele burdens, larger spleens and higher prevalence of chemotherapy compared to PV patients who had less than 50% JAK2V617F homozygous HSCs. The percentage of JAK2V617F homozygous HSC did not correlate with disease duration: some PV patients with a disease duration of >18 years had less than 10 % JAK2V617F homozygous HSC. A JAK2V617F - positive PV patient with a high JAK2V617F HSC burden and a high neutrophil JAK2V617F burden transformed to a JAK2V617F-negative chronic myelomonocytic leukemia (CMMoL); at the time of HSC analysis, the neutrophil JAK2V617F allele burden was 0% (previously 90%) and the HSC JAK2V617F homozygous percentage fell to 3% (previously 60%). While this patient's CMMoL was molecularly undefined, lesions identified in other JAK2V617F-positive patients (including mutations of ASXL1, TET2, deletion of 5q, 7q and 11q, trisomy 8 and 9), were also found in the CD34+ CD38- ALDH+ HSCs using single cell techniques, sometime coexistent with JAK2V617F-positive HSC, and sometimes in JAK2WT HSC. Conclusion: Driver and progression lesions in the JAK2V617F-positive MPN are acquired at the primitive HSC level. Despite decades of disease, the HSC pool in the MPN is mosaic for acquired lesions and also retains JAK2WT clones. Dominance of a particular JAK2 genotype at the primitive HSC level is variable, and distinguishes ET, where JAK2WT stem cells outnumber JAK2V617F-positive HSC, from MF, where JAK2WT HSC are the minority. PV is the most variable of the three MPN with regard to JAK2 genotype mosaicism. The allelic burden of HSC JAK2V617F in PV correlates with clinical disease burden. However, neither time nor JAK2V617F genotype determines the HSC burden in ET and PV, indicating that an undefined factor is a modifier of this important disease-defining process. Understanding the biology of HSC JAK2V617F homozygous clonal dominance may define an exploitable target to control disease burden, and to mitigate disease progression and evolution. Disclosures Moliterno: incyte: Membership on an entity's Board of Directors or advisory committees. Spivak:Incyte: Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document