scholarly journals Perovskite Solar Cells: Low‐Dimensional Perovskites with Diammonium and Monoammonium Alternant Cations for High‐Performance Photovoltaics (Adv. Mater. 35/2019)

2019 ◽  
Vol 31 (35) ◽  
pp. 1970252 ◽  
Author(s):  
Pengwei Li ◽  
Chao Liang ◽  
Xiao‐Long Liu ◽  
Fengyu Li ◽  
Yiqiang Zhang ◽  
...  
2019 ◽  
Vol 7 (15) ◽  
pp. 8811-8817 ◽  
Author(s):  
Chunqing Ma ◽  
Dong Shen ◽  
Bin Huang ◽  
Xiaocui Li ◽  
Wen-Cheng Chen ◽  
...  

One-dimensional perovskites enable high performance low-dimensional perovskite solar cells.


Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 2 ◽  
Author(s):  
Cuili Gai ◽  
Jigang Wang ◽  
Yongsheng Wang ◽  
Junming Li

Halide perovskite solar cells (PSCs) are considered as one of the most promising candidates for the next generation solar cells as their power conversion efficiency (PCE) has rapidly increased up to 25.2%. However, the most efficient halide perovskite materials all contain toxic lead. Replacing the lead cation with environmentally friendly tin (Sn) is proposed as an important alternative. Today, the inferior performance of Sn-based PSCs mainly due to two challenging issues, namely the facile oxidation of Sn2+ to Sn4+ and the low formation energies of Sn vacancies. Two-dimensional (2D) halide perovskite, in which the large sized organic cations confine the corner sharing BX6 octahedra, exhibits higher formation energy than that of three-dimensional (3D) structure halide perovskite. The approach of mixing a small amount of 2D into 3D Sn-based perovskites was demonstrated as an efficient method to produce high performance perovskite films. In this review, we first provide an overview of key points for making high performance PSCs. Then we give an introduction to the physical parameters of 3D ASnX3 (MA+, FA+, and Cs+) perovskite and a photovoltaic device based on them, followed by an overview of 2D/3D halide perovskites based on ASnX3 (MA+ and FA+) and their optoelectronic applications. The current challenges and a future outlook of Sn-based PSCs are discussed in the end. This review will give readers a better understanding of the 2D/3D Sn-based PSCs.


2020 ◽  
Author(s):  
Luyao Zheng ◽  
Kai Wang ◽  
Tao Zhu ◽  
Yongrui Yang ◽  
Kai Gu ◽  
...  

Solar Energy ◽  
2019 ◽  
Vol 182 ◽  
pp. 237-244 ◽  
Author(s):  
Ahmed-Ali Kanoun ◽  
Mohammed Benali Kanoun ◽  
Abdelkrim E. Merad ◽  
Souraya Goumri-Said

MRS Bulletin ◽  
2020 ◽  
Vol 45 (6) ◽  
pp. 431-438 ◽  
Author(s):  
Shuang Xiao ◽  
Yu Li ◽  
Shizhao Zheng ◽  
Shihe Yang

Abstract


2021 ◽  
pp. 2008405
Author(s):  
Zhihao Zhang ◽  
Yifeng Gao ◽  
Zicheng Li ◽  
Lu Qiao ◽  
Qiu Xiong ◽  
...  

2021 ◽  
pp. 2104036
Author(s):  
Jun Li ◽  
Lijian Zuo ◽  
Haotian Wu ◽  
Benfang Niu ◽  
Shiqi Shan ◽  
...  

Author(s):  
Jing Ren ◽  
Shurong Wang ◽  
Jianxing Xia ◽  
Chengbo Li ◽  
Lisha Xie ◽  
...  

Defects, inevitably produced in the solution-processed halide perovskite films, can act as charge carrier recombination centers to induce severe energy loss in perovskite solar cells (PSCs). Suppressing these trap states...


Sign in / Sign up

Export Citation Format

Share Document